T_ E c A a d I a a D a
 D c.... aB a \quad. I
 b - T $-\mathbf{S}-\mathbf{d}$

Liang Li, ${ }^{1}$ J. an H ang, ${ }^{1}$ Xihong W. , ${ }^{1}$ Jame G. Qi, ${ }^{2}$ and B1. ce A. Schneidel ${ }^{2}$

a 11 a

[^0]
(Eal \& Heal ing 2009;30;273 286)

INTRODUCTION

Per hap ${ }^{t}$ he mo ${ }^{1}$ in $^{1} 1$ ig ing e^{t} ion in a dil or cene anal i i ho li ${ }^{1}$ enel ate able ${ }^{1}$ o de ${ }^{1} \mathrm{ec}^{1}$, iden ${ }^{1}$ if, loca $^{1} \mathrm{e}$, and chat act eri e indi id al o nd o. 1ce in noi, 1e erber an ${ }^{1}$ en ilonmen hen ${ }^{1}$ he 1 ecei e no ${ }^{1}$ onl ${ }^{1}$ he o nd a e ${ }^{\text {th }}$ ha diect come fiom an io o nd o. 1 ce, $\mathrm{b}^{\mathrm{t}}{ }^{\mathrm{t}}$ al o n mero fil ered and ${ }^{1}$ ime-dela ed 1 eflec ${ }^{1}$ ion fiom ${ }^{1}$ he all, ceiling and ${ }^{1}$ hel 1 face (e.g., Bi egman 1990; Koehnke \& Be ing 1996). In ch en it onmen ${ }^{1}$, li^{t} enel, e peciall oldel ad l^{l} li ${ }^{1}$ enel , of en find 1^{1} diffic $1^{\prime}{ }^{1}$ o ploce aco ${ }^{1}$ ic ignal (e.g.,
 (e.g., Chee man e ${ }^{\text {l }}$ al. 1995; D bno e ${ }^{1}$ al. 1984; D e no 1983; Gelfand e ${ }^{1}$ al. 1988; Gol don-Salan \& Fil gibbon 1995; Helfer \& Wilber 1990; Nabelek \& Robin on 1982; Nabelek 1988; Pichor a-F llee e ${ }^{\text {l }}$ al. 1995; $\mathrm{S}^{\text {d }}$ al \& Phillip 1996). Hel e e in e^{1} igat ed he hel age-1 ela ${ }^{1}$ ed declea e in ome of ${ }^{1}$ he petcep al proce e^{1} ha ppol ${ }^{1}$ a dil or cene anal i migh ${ }^{1}$ be con 1 ib ${ }^{t}$ ing ${ }^{l}{ }^{1}{ }^{l}$ he diffic. ${ }^{l}$ ie ${ }^{t}$ hat older ad ${ }^{1}$ e per ience in noi, 1 e el bel an ${ }^{\mathrm{t}}$ en ilonmen

Ad. Sc. A a.
To pelcep. all eparae a ${ }^{1}$ alge fiom ${ }^{1}$ he backgio nd in
 be able ${ }^{1}$ odiffer en ia e^{t} he gro p of consela ${ }^{1}$ ed o nd a $e^{1}{ }^{1}{ }^{1}$ belong ${ }^{1}{ }^{1}$ he 1 a get ${ }^{1}$ (he direc ${ }^{1}$ a e fi om ${ }^{1}$ he 1 a get ${ }^{1}$ o. 1 ce and $i^{1}{ }^{1}$ ime-dela ed and fil el ed 1 eflec ${ }^{1}$ ion) fiom, o nd a e prod ced b o hel o nd o. 1ce (hich ill no be a highl collela ed ${ }_{1}^{1} h^{1}$ he direc ${ }^{1}$ a e emana ing fi om ${ }^{1}$ he ${ }^{1}$ a ge ${ }^{1}$). In ${ }^{1}$ her old, ${ }^{1}$ o efficien ${ }^{1}$ proce ${ }^{1}$ he ignal coming fiom an $a^{\text {th }}$ ended o nd o. 1 ce in a noi , ie el bel an en il onmen ${ }^{1}$, he a di or ${ }^{t}$ em need ${ }^{t}$ o cond ${ }^{1}{ }^{1}$ o major per cep al oper${ }_{i}^{1}$ ion: (1) in egia e^{l} he diec a e fiom ${ }^{l}$ he ${ }^{1}$ al ge ${ }^{1}$ o nd $i^{1} h$ ${ }_{1}^{1}$ conselat ed 1 eflection; and (2) egregat ${ }^{t}$ he ${ }^{t}$ at ge $^{t} \quad$ o nd a e fiom ound a e genel a ed b o hel o. 1ce. If hel e ate defici ${ }^{1}$ in ${ }^{1}$ he fil ${ }^{1}$ opel a ion, ${ }^{1}$ he o nd 1 eflec ion ${ }^{1}$ hemel e, a^{1} hel ${ }^{t}$ han being percep all in ega ${ }^{1}$ ed $i^{1} h{ }^{1}$ he o. 1 ce, co $1 d \mathrm{pli}^{\mathrm{l}}$ off (Bla $\mathrm{el}^{\mathrm{l}} \&$ Lindemann 1986) fi om ${ }^{1}$ he dilec ${ }^{1}$ a e and be percei ed a epala a dil or e en ${ }^{1}$. If ${ }^{t}$ hele ate defici ${ }^{1}$ in ${ }^{1}$ he econd oper a ion, infor mal ion fiom 0^{1} hel o. 1ce migh be pal ${ }^{1}$ iall in egi a ed ${ }^{1} h^{1} h^{1}{ }^{1}$ of ${ }^{1}$ he ${ }^{1}$ alge $\quad 0.1 \mathrm{ce}$, leading ${ }^{1}$ o conf ion. Thel efor e, ${ }^{1} \mathrm{o}$ be capable of de el mining he her or no ${ }^{1 t}$ o a efi on , alri ing a differen ${ }^{1}$ ime and fiom differen ${ }^{1}$ dilec ${ }^{1}$ ion ale fiom ${ }^{1}$ he ame
o. 1 ce or fiom differ en ${ }^{1}$ o. 1 ce, ${ }^{1}$ he a dil or $\quad{ }^{1}$ em ha ${ }^{1}$ o be able ${ }^{1}$ o 1 ecogni e hen a ${ }^{1}$ ime- hif ed el ion of one a e i highl conela ed i^{i} h ano hel. If he a dil ol ${ }^{1} \mathrm{em}$ of oldel ad l^{l} a e le capable ${ }^{1}$ han ${ }^{1}$ ho e of o nger ad $\mathrm{l}^{\mathrm{l}} \mathrm{a}^{1}$ recogni ing hen a ${ }^{1}$ ime- hif ed el ion of one a e i colrela ed $i^{1} \mathrm{~h}$ ano hel, ${ }^{1}$ he a dit or cene of older ad ${ }^{1}$ ill be mol e $\mathrm{cl}^{\mathfrak{t t}}$ el ed and conf ed^{1} han 1 hat of oongel ad 1^{1}. Thi migh ${ }^{1}$ e plain h oldel ad l^{l} a e e peciall di ad an aged in highl 1e el bel an en il onmen ${ }^{1}$.

I a... - \quad. \quad Wa a d $I \quad R, c_{\ldots}$: T_ \mathbf{P} cd_ceccect

When ${ }^{1}$ he dela be ${ }^{1}$ een ${ }^{1}$ he diecc ${ }^{1}$ a e fiom ${ }^{1}$ he o. 1 ce and one of $\mathrm{i}^{\mathrm{l}} 1 \mathrm{efflec}^{\mathrm{l}}$ ion i fficien ${ }^{\mathrm{l}}$ hol (e.g., 510 m ol le , depending on ${ }^{l}$ he ${ }^{1}$ im 1), all non pa ial $\mathrm{a}^{l} 1 \mathrm{ib}^{1} \mathrm{e}$ of ${ }^{1}$ he
 (e.g., Li e ${ }^{1}$ al. 2005), leading ${ }^{t}$ o a f ed o. nd image ho e poin of ol igin i pel cei ed ${ }^{1}$ o be a a^{1} or neal ${ }^{1}$ he loca ion of ${ }^{1}$ he o nd o. 1 ce. Thi phenomenon i called ${ }^{1}$ he precedence effec ${ }^{1}$ beca e^{1} he a efion ${ }^{1 t}$ oalit efii ${ }^{t 1}$ ake plecedence o e o ${ }^{1}$ he con elal ed a efion (Bla el 1997; Li\&Y e 2002; Lito k éal. 1999; Wallach e^{1} al. 1949). The t_{1} eng h of ${ }^{\mathrm{l}} \mathrm{hi}^{1}$ in egi a ion in a 1 e erberan en ionmen i lat gel de er mined $b{ }^{t}$ he dela be een ${ }^{1}$ he dilect and refleced a e. When ${ }^{1}$ hi dela i fficien ${ }^{1}$ h hol (le ${ }^{1}$ han ${ }^{1}$ he echo ${ }^{1}$ hie hold), ${ }^{1}$ he dil ec ${ }^{1}$ a e and ${ }^{1}$ he 1 eflec ${ }^{1}$ ion ale f ed in ${ }^{1}$ a ingle image, in hich ${ }^{1}$ he pelcei ed loca ion i a ol neal ${ }^{1}$ he loca ion of he o. 1 ce. The pa ial $e^{t} e^{l}$ of ${ }^{t}$ he f ed image. all e ceed ${ }^{t}$ ha ${ }^{\text {l }}$ ob el ed
${ }^{1}$ i e e en ${ }^{1}$, one a^{1} each eal. When ${ }^{1}$ he in ${ }^{1}$ el a 1 al collela ion a $0.25,0.50$, ol $0.75, \mathrm{li}^{1}$ enel per cei ed one diff e e en in ${ }^{1}$ he median plane, and ${ }^{\mathrm{l}}$ o addi ional one la el ali ed mme ${ }^{\mathrm{l}}$ 1 icall ${ }_{1}^{1}$ h $1 \mathrm{e} \operatorname{pec}^{1}{ }^{1}{ }^{1}$ he median plane. In ${ }^{1}$ hel old, ${ }^{1}$ he compac ne, n mbel, and placemen of image depend on ${ }^{1}$ he degiee of in ela 1 al conselat ion. l^{l} i no clear, ho e er,
 proce in ela 1 al correla ion. Ne el hele, e o ld e pect ${ }^{1}$ ha an age-1 ela ed dimin ${ }^{1}{ }^{1}$ ion in ${ }^{1}$ he abili ${ }^{1}{ }^{1}{ }_{0}$ de ec 1 and proce in ela 1 al colrelation, e peciall hen one of ${ }^{1}$ he o. nd a dela ed ${ }_{1}^{1}$ hie pec ${ }^{1}{ }_{o}^{1}$ he o hel, co ld lead ${ }^{1}$ o a mole fi agmen ed a dit or cene in older ad l^{l}, hich o. ld inclea $e^{\text {he }}$ diffic l^{1} of a ${ }^{\mathrm{dt}}$ ending ${ }^{1} \mathrm{o}$ and pr oce ing infor ma${ }^{1}$ ion fi om ${ }^{1}$ he ${ }^{1}$ al ge ${ }^{1}{ }^{1}$ alker.
U.. I a a C an... D c C a d $\mathbf{S}-\mathbf{a}-\mathbf{r}-\mathbf{d E} \quad \mathbf{d}$

De ${ }^{1} e^{1}$ ing a collela ${ }^{1}$ ion be ${ }^{1}$ een ${ }^{1}$ o ignal in ${ }^{1}$ he o. nd field i, ome ha mole complica ${ }^{1}{ }^{1}$ han de ect ing a clo -eal colvela ion ndel headphone condil ion. A me for ${ }^{1}$ he momen 1 ha ${ }^{1}$ e ha e^{1} o lo d peaker loca ed 45 degree ${ }^{1}{ }^{1}$ he lef and 1 igh of ${ }^{1}$ he li ${ }^{1}$ ener in an anechoic en it onmen ${ }^{1}$, pla ing independen band-limit ed hit noi e $\left(g(t)\right.$ o el ${ }^{1}$ he lef lo d peakel and $h(t)$ o el ${ }^{\text {d }}$ he $1 \mathrm{igh}^{\mathrm{t}}$ lo d peaket , bo ${ }^{1} \mathrm{~h}$ ha ing band id $\mathrm{h} \quad W=10 \mathrm{kH}$. To implif ${ }^{1}$ he $\mathrm{I}_{1}^{1} \mathrm{a}^{1}$ ion, e can mea 1 e , in ${ }^{\text {t }}$ he ab ence of ${ }^{\mathrm{t}}$ he $\mathrm{li}^{\mathrm{t}}{ }^{\text {enel, }}{ }^{\mathrm{t}}$ he o nd ple, 1 e $a^{1 t}$ he po ${ }_{1}{ }^{\text {t }}$ ion ${ }^{1}$ ha ${ }^{t}$ o ld be occ pied $b{ }^{l}$ he li ${ }^{1}$ enel' lef and 1 igh eal. Thi i e i alen ${ }^{11}$ oa ming hat he head doe no ${ }^{1}$ ca ${ }^{1}$ a o nd hado o^{1} ha ${ }^{1}$ onl ${ }^{1}$ he dela be ${ }^{1}$ een ${ }^{1}$ he o. nd a11i ing $a^{1 t}$ he neal and fal eal need ${ }^{1} o$ be con idered ($a^{1} 45$ degtee, ${ }^{1}$ he dela, δ, i appıo ima el 0.363 m). In ${ }^{1}$ hat ca e, ${ }^{1}$ he ignal ani ing a ${ }^{t}$ he po i ion occ pied $b{ }^{t}$ he lef eal i $g(t)$ $+h(t-0.000363)$, helea ${ }^{t}$ he ignal a11i ing a ${ }^{1}$ he po i_{1} ion occ pied b 1 igh eal i $\mathrm{g}(t-0.000363)+h(t)$. The nol mal$i$ ed clo -colsela ion $f n^{t}$ ion fol ${ }^{t}$ hi ca e i ho n in Fig. 1 e 1 (op panel). No $\mathrm{e}^{\mathrm{t}} \mathrm{ha}^{\mathrm{t}}$ he normali ed cio -conelation f nct ion ha ${ }^{1}$ o peak a $\tau=-0.363 \mathrm{~m}$ and $\tau=0.363 \mathrm{~m}$. The e^{1} o peak repie en ${ }^{1}$ he clo -collela ion be ${ }^{1}$ een ${ }^{t}$ he direc a e alri ing a ${ }^{1}$ he neal eal fiom an off midline o. 1 ce and ${ }^{1}$ he ame a eani ing at ${ }^{1}$ he far eal. No ${ }^{t} e^{t}$ ha $^{1}{ }^{t}$ he e^{t} o peak, ill al a be pre en ${ }^{\mathrm{t}}{ }^{1}{ }^{1}$ here a e^{t} o lo d peaker mme $^{1} 1$ icall di placed fi om ${ }^{1}$ he midline.
When ${ }^{l}$ he ${ }^{1}$ o noi e a e collela ${ }^{l}$ ed and ${ }^{i}$ he lef ${ }^{d}$-lo d peaker noi e lead ${ }^{1}$ he $1 \mathrm{igh}{ }^{\mathrm{h}}$-lo d peaker noi eb γ econd, ${ }^{1}$ he ignal alıi ing a^{t} he lef ${ }^{\mathrm{t}}$ eal $\mathrm{i} g(t)+g(t-\delta-\gamma)$, hel ea ${ }^{\mathrm{t}}$ he ignal a11i ing a ${ }^{1}$ he 1 igh eal i $g(t-\delta)+g(t-\gamma)$, hen mea. 1emen at ${ }^{1}$ aken in ${ }^{1}$ he ab ence of ${ }^{1}$ he head. Fig. 1 e 1 (bo ${ }^{11}$ om panel) al o plo ${ }^{1}{ }^{1}$ he normali ed clo^{2}-con ela ion f nct ion* for $\gamma=5 \mathrm{~m}$ and $\delta=0.363 \mathrm{~m}$. No ${ }^{1} \mathrm{e}^{\mathrm{t}} \mathrm{ha}^{\mathrm{t}}{ }^{\mathrm{t}} \mathrm{hi}$ clo collela ion f nct ion ha ${ }^{1}$ o peak on each ide of $\tau=0$, one corre ponding ${ }^{1}{ }_{o}{ }^{1}$ he in er a 1 al dela $\left(0.0363 \mathrm{~m}_{1}\right)$ and one colle ponding ${ }^{t}{ }_{o}{ }^{t}$ he dela be ${ }^{t}$ een ${ }^{t}$ he conela ed o nd pla ed o el ${ }^{t}$ he lef - and 1 ight -lo d peakel $(5 \mathrm{~m})$. A ${ }^{1}$ he lo d peakel dela i dectea ed, ${ }^{1}$ he peak in ${ }^{1}$ he clo -col1 ela${ }^{1}$ ion $\mathrm{f} \mathrm{nc}^{\mathrm{c}}$ ion ca ed $\mathrm{b}{ }^{\mathrm{t}}$ hi dela hif ${ }^{\downarrow}$ accoldingl (and become one hen $\tau=0$), het ea ${ }^{\mathrm{t}}$ he ${ }^{\mathrm{t}}$ o peak ca ed $\mathrm{b} \delta$ ate naffec ed b an dela be een ${ }^{l}$ he lo d peakel. Hence, ${ }^{t}$ he li ${ }^{1}$ ener co ld di climina e be ${ }^{1}$ een contela ed and indepen-

[^1]
$$
W=
$$
den noi e ba ed on ${ }^{1}$ heil abili ${ }^{1}{ }^{1}$ o de ${ }^{1}$ ec d a peak in ${ }^{1}$ he clo -conela ion $f n^{1}$ ion a a dela e. al ${ }^{1}{ }^{1}$ ha 1 be e^{1} een ${ }^{1}$ he coll ela ${ }^{1}$ ed o. nd coming fi om ${ }^{1}$ he ${ }^{1}$ o lo d peakel

In Fig 1 e $1,1{ }_{1}^{1}$ i a med ha ${ }^{1}{ }^{1}$ hele i no o nd $\mathrm{a}^{1{ }^{1}}$ en a^{1} ion beca e of he hado $\mathrm{ca}^{\mathrm{l}} \mathrm{b}^{1}$ he head. Fig 1 e 2 ho ${ }^{1}$ ha ${ }^{1}$ hen ${ }^{1}$ he head-1 ela ${ }^{1}$ ed ${ }^{1}{ }_{1}$ an fel f nct ion al e incl ded in ${ }^{1}$ he comp. ${ }^{1}{ }^{1}$ ion of ${ }^{l}$ he nor mali ed clo -coll ela ion f nc ${ }^{1}$ ion, ${ }^{1}$ hel e i a declea e of ${ }^{1}$ he heigh of ${ }^{1}$ he peak beca e of ${ }^{1}$ he $i_{n}{ }^{1}$ el a 1 al dela, δ, an enhancemen of he peak al $\tau=\gamma \mathrm{m}$, and $\mathrm{a} \cdot \mathrm{b}^{1}$ an ial dimin ${ }^{1}$ ion of ${ }^{1}$ he peak $\mathrm{a}^{1} \tau=-\gamma \mathrm{m}$. Ho e el, ${ }^{1}$ he declea e in 1 he peak ca ed ${ }^{1}{ }^{1}$ he in el a 1 al dela ate he ame for bo ${ }^{t} h$ independen and correla ed noi e hen ${ }^{1}$ he o nd hado i con idered. A are it he e peak con e no information a ${ }_{0}$ he hel or no ${ }^{1}$ he ${ }^{1}$ o o nd at e collela ed. Hence, ${ }^{1}$ he onl a ${ }^{1}$ o de el mine he her ol no ${ }^{1}$ he o. nd ale contela ed fiom ${ }^{1}$ he cio -collela ion f nc 1 ion $i^{1}{ }_{o}$ be able ${ }^{1} \mathrm{o}$ en e^{l} he peak at $\tau=5 \mathrm{~m}$.
 ale enclo ed in a re elber an en itonmen (e.g., a o nd$a^{\mathfrak{t}}$ en a^{d} ing chambel, ${ }^{\mathrm{t}}$ he ele in ${ }^{\mathrm{l}}$ he e e pelimen ${ }^{1}$), hich ill in ${ }^{1} 1$ od ce ${ }^{1}$ hel peak ca ed b o nd 1 eflection. Ho e el, a an mber of ${ }^{l}$, die ha e indica ${ }^{1}$ ed (e.g., Fie man e^{1} al. 1999; Kidd e ${ }^{\text {l }}$ al. 2005; Koehnke \& Be ing 1996; Z. 1 ek e ${ }^{\text {l }}$ al.

W =
2004), ${ }^{1}$ he effec ${ }^{1}$ of adding ${ }^{1}$ he ${ }^{1}$ eflec ${ }^{1}$ ion $i^{1}{ }^{1}$ o incl ea e^{1} he per cep al diffic l^{l} ie enco n^{1} el ed b man ob el el and ale nlikel ${ }^{1}$ o pro ide an addil ional c. e ${ }^{1}$ hal ${ }^{1}$ o ld aid ${ }^{1}$ hem in di climina ing be een cols ela ed and independen ${ }^{1}$ o nd. Finall, ${ }_{1}^{1}$ ho ld be no ${ }^{1}$ ed ${ }^{1}$ ha ${ }^{11}$ he cio -cont ela ion $f n^{1}$ ion ho n in Fig re 1 and 2 a me ${ }^{1}$ ha ${ }^{1}$ he ${ }^{1}$ im li ate infinil e in d $1 a^{1}$ ion. Cro -colvelat ion $f n^{1}$ ion comp ${ }^{1}$ ed o el a hol el and mole 1 eali ${ }^{1}$ ic ${ }^{1}$ ime per iod o. ld be, in general, bl oader ${ }^{t}$ han ${ }^{1}$ ho e depic ${ }^{1}$ ed hel e.
U.- S, c a I - c Pa - - - S . d E d D c C a d S - a

In ${ }^{1}$ he o nd field, ${ }^{1}$ he degl ee of cont ela ion be ${ }^{1}$ een ${ }^{1}$ he le ${ }^{d}$ and 1 igh noi e i al ore ealed $b{ }^{1}$ he in el fer ence pa ${ }^{1 t}$ er n^{1} ha ${ }^{1}$ he, cleal ${ }^{l}$ hen ${ }^{1}$ he ${ }^{1}$ o a efolm add. If a band-limil ed hit e noi e i added ${ }^{1}{ }_{1}^{1}$ elf af el a dela of γ ec, ${ }^{1}$ he long- elm po el pec $1 . \mathrm{m}^{1}{ }^{1}$ heil m i no longel fla ${ }^{\text {b }}{ }^{\text {d }}$ 1ippled (comb fillea ing, Nai in e ${ }^{1}$ al. 1979). If he pec ${ }^{1} 1, m$ le el of ${ }^{1}$ he ol iginal noi e i N_{0}, ${ }^{1}$ he pect 1 m le el of ${ }^{1}$ he mmed noi e ill be $N_{0}(2+2$ co $[2 \pi f \gamma])$. Ho e el, if ${ }^{1}$ he t o noi e ate independen, ${ }^{1}$, he long- elm pect 1 , m le el i $2 N_{0}$ for all fie, encie i^{\prime} hin ${ }^{1}$ he band id h of ${ }^{1}$ he noi e. Hence, hen lef and 1 igh coll ela d ed, a efor m add, a 1 ipple pa ${ }^{\text {dl el }}$, ill be ob el ed in ${ }^{t}$ he pect $1 . m$, it h he $1 \mathrm{a}^{\mathrm{t}}$ e of mod la^{1} ion being de el mined b^{l} he dela.

Fig. 1e 3 plo ${ }^{1}{ }^{1}$ he long- ${ }^{1}$ elm po el pec $^{1} 1 a^{1} a^{t}$ he po 1_{1}^{1} ion occ pied b ${ }^{t}$ he lef (top panel) and $1 \mathrm{igh}^{\mathrm{d}}$ (bo ${ }^{\mathrm{tt}}$ om panel) eal for a band-limi ed noi e, $g(t),\left(10 \mathrm{kH}, N_{0}=1\right)$ pla ed o el a lo. d peaker loca ed 45 degee ${ }^{1}{ }^{1}{ }^{1}$ he lef ${ }^{d}$ of he li ${ }^{1}$ enel pl an iden ical el ion dela ed $\mathrm{b}, \gamma=1.5 \mathrm{~m}$ loca ed 45 degree ${ }^{1}{ }_{o}$ ${ }^{1}$ he $1 \mathrm{igh}^{\mathrm{l}}$ of ${ }^{1}$ he li ${ }^{1}$ ener o^{1} ha ${ }^{1}$ he in ela 1 al dela i^{1} again $\mathrm{e} \cdot \mathrm{al}^{t}{ }_{\mathrm{o}} 0.363 \mathrm{~m}$. If e ignot e^{1} he o nd hado $\mathrm{ca}^{1} \mathrm{~b}^{\mathrm{t}}$ he head, ${ }^{1}$ he ignal ani i ing a ${ }^{t}$ he lef eal i $g(t)+g(t-0.0015-$ 0.000363) and ${ }^{1}$ he ignal a11i ing ${ }^{1}{ }^{1}$ he $1 \mathrm{igh}^{\mathrm{s}}$ eal $\mathrm{i} g(t-$ $0.000363)+g(t-0.0015)$. Hence, ${ }^{1}$ he po el pec $1 . \mathrm{m} \mathrm{a}^{1}{ }^{1}$ he lef eal i $2+2$ co $(2 \pi f \times 0.001863)$, and he po el pect $1 . \mathrm{m}$ ${ }^{1}{ }^{1}$ he 1 igh eal i $2+2$ co $(2 \pi f \times 0.001137)$. B a of con ${ }^{1} a^{\mathrm{t}}$, if ${ }^{\mathrm{t}}{ }^{\mathrm{t}}$ o noi e ale independen (again a ming no head hado effec ${ }^{1}$), ${ }^{1}$ he po el pect $1 . m$ ha a niform al e of $2 \operatorname{aclo}^{1}$ he en ile pect. m . If ${ }^{1}$ he a dil ol ${ }^{1}$ em ele ${ }^{\mathrm{l}}{ }_{\mathrm{o}}$ compar ${ }^{1}$ he o ${ }^{1}$ p. ${ }^{1}$ of a 1 igh eal mona 1 al fill el cen el ed a ${ }^{1}$ $440 \mathrm{H}^{\mathrm{t}}$ o one cen er ed a ${ }^{1} 880 \mathrm{H}$, ${ }^{\text {th }}$ he differ ence be ${ }^{1}$ een ${ }^{1}$ he $o^{1}{ }^{1}{ }^{\text {t }}$ of ${ }^{1}$ he e ${ }^{1}$ o filter o. ld be lag ge hen ${ }^{1}$ he noi e ele collela ${ }^{1}$ ed and 0 hen ${ }^{t}$ he noi e ele independen. Al er na ${ }^{1}$ el, if he a dit or ${ }^{1}$ em el e ${ }^{\text {t }}$ o compar ${ }^{t}$ he lef and $1 \mathrm{igh}^{\mathrm{l}}$-eal mona 1 al fil er cen el ed a 537 H , the in el a 1 al differ ence in ${ }^{t}$ he o. ${ }^{1}{ }^{1}{ }^{t}$ of ${ }^{1}$ he e^{t} o fil el o. ld be la ge hen ${ }^{1}$ he lef ${ }^{f}$ and 1 ight-lo d peaker noi e elecorlela ed and negligible hen ${ }^{1}$ he ele independen ${ }^{1}$.

Hence, ${ }^{1}$ he a dil or ${ }^{1}$ em co ld make. e of bo ${ }^{1} h$ mona 1 al and bina 1 al pecital c e, a ell a cio -eal coliela- 1 ${ }^{1}$ ion ${ }^{1}{ }_{0}$ dee ${ }^{1}$ ermine he her or no a a efi on auri ing fiom one dilec ${ }^{1}$ ion a a dela ed el ion of ano hel a efi on ${ }^{1}$ hat had a11i ed pre io 1. Age-1 elat ed change in ${ }^{1}$ he abilil ${ }^{1}{ }_{0}$ de ec ${ }^{1}$ in er a 1 al $\operatorname{pec}^{1} 1$ al difference, a ${ }^{1}$ emal ic 1 ipple in ${ }^{1}$ he mona 1 al peci. m , or age-1 ela ed change in ${ }^{1}$ he abili ${ }^{1}{ }^{1}{ }_{o}$ de ec an in ela al conselation (e peciall hen here a a

[^2]dela), co $1 d \operatorname{affec}^{1}{ }^{1}$ he abili ${ }^{1}$ of older ad $1^{1}{ }^{1} o$ par e^{1} he a dí ol cene a effecti el a o ngel ad i^{1}.

T_ $\mathbf{A} \quad \mathbf{P} \quad \mathbf{S} \mathbf{d}$
In e pelimen 1 of ${ }^{i}$ he pue en ${ }^{1}$ d, e a e ed ${ }^{t}$ he age-- ela ed difference in ${ }^{t}$ he abill ${ }^{t} o$ de ect a BIC hen bloadband noi e ale ple en ed el hel o el headphone ol o el lo. d peaker. No ${ }^{1}{ }^{t}$ ha hen ${ }^{1}$ he BIC i ple en ed o el headphone, onl bina 1 alc e ale a ailable. Ho e el, hen ${ }^{t}$ he ame ignal ale ple en ${ }^{1}$ ed in ${ }^{1}$ he o nd field, ${ }^{1}$ he li ${ }^{1}$ enel co ld. e comb-fil el ing effec ${ }^{{ }^{1}}{ }^{1}$, pplemen ${ }^{\mathfrak{t} t}$ he infor mal ion ob ained ${ }^{\text {b }}$ ho gh in ela al colvela ${ }^{l}$ ion. Hence, if li ${ }^{1}$ enel
 e pec ${ }^{t^{1}} \mathrm{o}$ find be $^{\text {fitel }}$ pel fol mance in ${ }^{1}$ he o. nd field ${ }^{t}$ han . ndel headphone pre en a ${ }^{1}$ tion.

Ba ed on ${ }^{1}$ he 1 e 1^{1} of e perimen ${ }^{1} 1$, in e perimen ${ }^{1} 2$ e e amined ${ }^{\text {t }}$ he longe ${ }^{1}$ in ela a al dela a^{l}, hich a BIC ${ }_{1}^{1} \mathrm{~h}$ a long d $1 a^{d}$ ion (100 m , hich a ell abo e^{t} he BIC-d $1 a^{l}$ ion ${ }^{t}$ hie hold a ${ }^{1}$ the elo in er a 1 al dela) a de ec able, in bo ${ }^{1}$ h o nger ad I^{1} and older ad i^{1}. We al o e amined ${ }^{1}$ he longe ${ }^{1}$ in 2 el lo d peaker dela here ${ }^{1}$ he change of in ${ }^{1}$ el o nd correla ion co ld be de ec ${ }^{1}$ ed ${ }^{1}$ o e al a ${ }^{1} e^{t}$ he degee ${ }^{1} o$ hich mona 1 al and bina 1 al pectral ce e ld aid in ${ }^{1}$ he de ect ion of a BIC.

MATERIALS AND METHODS

 I ..dD a
$\mathbf{P a}$ - c, a - Ten o ngel ad ${ }^{1}$ (6 female , 4 male, 1921
 a ga) and 10 oldel ad l^{t} (3 female , 7 male , 64751 old, 1ect. it ed fiom ${ }^{\text {t }}$ he local comm nil ${ }^{1}$) pal ${ }^{1}$ icipa ${ }^{2}$ ed in e perimen ${ }^{l}$ 1. None of he pal icipan had an hil ol of hear ing di ol dee , and none ed heal ing aid. All pal ${ }^{1}$ cipan $g a e^{t}$ heil 11^{11} en informed con en ${ }^{1} \mathrm{o}$ o pal ${ }^{\text {l }}$. apa 1 e in ${ }^{1}$ he e pelimen and ele paid a mode ${ }^{\mathrm{t}}{ }^{1}$ ipend fol ${ }^{l}$ heir pal ${ }^{l}$ icipa ${ }^{1}$ ion. The e pal ${ }^{l}$ icipan ${ }^{l}$ did no ${ }^{t}$ pal ${ }^{l}$ icipat ${ }^{\text {t }}$ e in e pelimen 2.

The o. nger ad \mathfrak{l}^{1} and 6 of ${ }^{t}$ he 10 older ad 1^{1} had p. $1 \mathrm{e}^{\mathrm{l}}$ one, ail-cond c^{1} ion ${ }^{\mathrm{t}}$ hie hold le ${ }^{\mathrm{t}}$ han 25 dB HL be ${ }^{1}$ een 0.25 and 3 kH . Fo. 1 oldel ad 1^{1} had heal ing le el a^{1} lea ${ }^{t} a^{t}$ one of ${ }^{t} e^{1} e^{t}$ fie encie ${ }^{t}$ ha ${ }^{1}$ ele langel ${ }^{1}$ han 25 dB HL b ${ }^{1}$ le ${ }^{1}$ han 35 dB HL. Heal ing ${ }^{1}$ he hold for all pal icipan ${ }^{1}$ ere mmer ical (in er a 1 al differ ence le ${ }^{t}$ han $15 \mathrm{~dB} \mathrm{a}^{\mathrm{l}}$ each fie enc). Fig ie 4 pie en ${ }^{1}$ a el age heal ing le el for bo h age gio pa af nct ion of fie enc. Thie hold for all of he o ngel ad l^{l} ete ell i^{l} hin ${ }^{1}$ he nol mal 1 ange. On a el age, ${ }^{1}$ he oldel ad i^{1}, ${ }^{1}$ hie hold ele $8{ }^{1}$ o 10 dB poolel ${ }^{1}$ han ${ }^{i}$ ho e of o ngel ad 1 for fie encie le ${ }^{t}$ han 2 kH . Fol fie encie higher ${ }^{1}$ han $2 \mathrm{kH},{ }^{1}$ hie hold diffel ence inclea ed and differed b a m ch a $40 \mathrm{~dB} \mathrm{a}^{\mathrm{t}}$ he highe ${ }^{1}$ fie enc ${ }^{1} e^{1}$ ed. Al ho gh older ad $1^{1} \quad 1_{1}^{1} h$ hear ing in ${ }^{1}$ hi 1 ange are all efert $^{1}{ }^{1}$ o a ha ing clinicall nol mal heal ing, he are be ${ }^{1}$ chatac ${ }^{1}$ elied a being in ${ }^{1}$ he eal ${ }^{1}{ }^{1}$ age of plebc. i. Hence, ${ }^{\text {t }}$ he ele likel e petiencing bclinical decline in a n mber of a dil ol $\mathrm{f}^{1}{ }^{1}$ ion, incl ding ${ }^{1}$ ho erela ${ }^{1}{ }^{1}{ }^{1}{ }^{1}{ }^{1}$ emporal proce ing (e.g., Gor don-Salan ${ }^{1} \&$ Fil gibbon 1995, 1999; Schneidel el al. 2002).

Frequency (kHz)
S._dca b •D. 1 ing ${ }^{1} e^{1}$ e ion, ${ }^{1}$ he pal ${ }^{1}$ icipan ${ }^{1}$ a ea ed in a chail ${ }^{1}{ }^{1}$ he cen el of an Ind ${ }^{1}$ ial Aco ${ }^{1}$ ic Compan o. nd-a ${ }^{\text {th }}$ en a^{l} ed chamber, ho e in ${ }^{\text {l }}$ nal dimenion ele 283 cm in leng $\mathrm{h}, 274 \mathrm{~cm}$ in id h , and 197 cm in heigh ${ }^{1}$. The eal 1 deca ${ }^{1}$ ime, hich mea $1{ }^{\text {ed }}{ }^{1}$ he ${ }^{1}$ ime o el ${ }^{t}$ he fil ${ }^{t} 10 \mathrm{~dB}$ of ${ }^{t}$ he deca and ale rela ed ${ }^{t}{ }_{0}$. bjecti e j. dgmen ${ }^{1}$ of re el bel ance (Biadle 1991), ele 0.093, 0.135, $0.090,0.079,0.088$, and 0.086 ec fol fie encie of 125,250 , $500,1000,2000$, and 4000 H , 1e $\operatorname{pec}^{1} \mathrm{i}$ el .
S. . a... a d d. \quad Ga ian bloadband noi é (band id $\mathrm{h}=010 \mathrm{kH}$; ampling $1 \mathrm{a}^{\mathrm{t}} \mathrm{e}=20 \mathrm{kH}$), in hich $d{ }^{1}{ }^{1}$ ion ele 1000 m , ele digitall n^{l} he i ed b gener ${ }^{1}$ ing 20,000 independen 1 andom nor mal de ia ${ }^{t}$. Hence, ${ }^{1}$ he a elage pect $1 . \mathrm{m}^{1}{ }^{1}$ he e digital noi e a fla ${ }^{\text {i }}$ o el ${ }^{\text {t }}$ he 1 egion fiom $0^{\text {t }} \mathrm{o} 10 \mathrm{kH}$. Thil ${ }^{\text {l }}$ milli econd, lineal on- and off- 1 amp ele applied ${ }^{1}$ o each noi e b. $1{ }^{\mathrm{t}}$. The e digt al ignal ele con el ed ${ }^{\text {t }} \mathrm{o}$ analog for m ing T. ckerDa i Technologie (TDT) DD1 digl al- 0 -analog con el el .nder ${ }^{1}$ he con 10 ol of a Dell comp ${ }^{1}{ }^{1}{ }_{1}^{1}$ ih a Pen ${ }^{1}$ im II ploce ol. The analog o o ${ }^{1}$ p ${ }^{1}$ ele lo -pa ed a ${ }^{\frac{1}{2}} 10 \mathrm{kH} \quad{ }^{1} \mathrm{~h}$
 (TDT PA4, for he lef and 1 igh channel), and fed in ${ }^{\text {t }}$ a headphone b. ffer (TDT HB5). The o ${ }^{\mathrm{t}} \mathrm{p}{ }^{\mathrm{t}}$, fiom ${ }^{\mathrm{t}}$ he headphone b ffel ele el hel ${ }^{1}$ an d ced b a paii of balanced headphone (Telephonic TDH-49P) or amplified ia a Hal man/Kal don po el amplifiee (HK3370) and ${ }^{1}$ hen deli el ed fi om ${ }^{\mathrm{t}}$ o balanced lo d peaker (Elec ${ }^{1}$ o-Medical In t_{1}. men ${ }^{1}$, $40 \quad \mathrm{a}^{\text {th }}$. The ${ }^{\mathrm{t}}$ olo d peakel ele in ${ }^{\text {t }}$ he fion al a im ${ }^{\text {t }}$ hal plane a^{t} he led and he 1 igh 45 po it mmen mical ith 1e pec ${ }^{1 t}{ }^{1}{ }^{t}$ he median plane, 1 e pec ${ }^{1} \mathrm{i}$ el . The di ${ }^{1}$ ance be ${ }^{\mathrm{l}}$ een each of ${ }^{\mathrm{l}}$ he ${ }^{\mathrm{t}}$ o lo d peakel ${ }^{\mathrm{t}} \mathrm{o}^{\mathrm{t}}$ he cen ${ }^{i}$ el of ${ }^{\mathrm{l}}$ he pal ${ }^{\text {ticipan }}{ }^{\mathrm{l}}$,
head a 169 cm . The lo d peake heigh a applo ima el eal le el for a ea ed pal icipan il ${ }^{1}$ ha el age bod heigh ${ }^{l}$.

All ${ }^{1}$ he ingle- o. 1ce le el ele fi ed a 60 dB SPL, hich a ell abo e^{1} hie hold and a a comfor able le el for bo h o. ngel and older pal icipan ${ }^{1}$. For lo d peaker ${ }^{1}$ im la ion condil ion, a Bi el \& Kj 1 miclophone a placed a ${ }^{11}$ he loca ion of ${ }^{1}$ he cen el of ${ }^{1}$ he pal icipan' head hen ${ }^{1}$ he pal ${ }^{1}$ icipan a ab en ${ }^{1}$. A eigh ing and a lo nolm me el 1 e pon e ele, ed.
P.c d \bullet T o $1000-\mathrm{m}$ in 1 el al of col1ela ${ }^{1}$ ed Ga ian bloadband noi e ele ple en ed ell hel o el headphone ol lo d peaker . The 1 igh -headphone (lo d peaker) noi e in one of ${ }^{l}$ he in ${ }^{l}$ el al a a cop of ${ }^{l}$ he lef -headphone (lo d peaker) noi e. The 1 igh ${ }^{1}$-headphone (lo d peakel) noi e in ${ }^{1}$ he o hel in el al a al o iden ical ${ }^{1}{ }^{1}{ }^{t}$ he led -headphone (lo d peaker) noi e e cep for ${ }^{1}$ he $b^{1} 1_{1}{ }^{1}$ ion of a BIC in ${ }^{1}$ od ced in ${ }^{1}$ he middle of he $1000-\mathrm{m}$ noi e $\mathrm{b} \quad \mathrm{impl} \quad \mathrm{b}^{1}{ }^{1}{ }^{1}$ ing an independen noi e egmen ${ }^{1 t} o^{l}$ he lef ${ }^{\text {d }}$ o. 1ce (Fig. 5). On each ${ }^{1} 1$ ial, ${ }^{\mathrm{t}}$ he BIC had an e al probabili ${ }^{i}$ of being 1 andoml a igned $^{1} \mathrm{o}$ one of ${ }^{1}$ o in ${ }^{1}$ el al of a^{t} o-in el al for ced choice (2IFC) paradigm. The ${ }^{\mathrm{l}}$ o in el al ele epala ${ }^{\mathrm{l}}$ ed b 1000 m (fi om ${ }^{t}$ he off e^{i} of ${ }^{1}$ he fil ${ }^{l}$ one ${ }^{1}{ }^{1}$ he on e^{1} of ${ }^{1}$ he econd one). Fol each in el al, ${ }^{1}$ he noi e coming fi om ${ }^{1}$ he lef ${ }^{d}$ headphone (ol ${ }^{1}$ he lef lo d peaker) and ${ }^{1}$ he noi e coming fi om ${ }^{1}$ he 1 igh headphone ($\mathrm{al}{ }^{\mathrm{l}}$ he 1 igh lo d peakel) ${ }^{\mathrm{t}} \mathrm{al}^{\mathrm{l}}$ ed a^{t} he ame ${ }^{\text {l }}$ ime. Fie h noi e o nd ele gener a ed for each ${ }_{1}$ ial. The pal icipan ${ }^{1}$, ${ }^{1}$ a $k \quad a^{1}{ }^{1}$ o iden if hich of 1 he ${ }^{1}$ o in el al con ained ${ }^{1}$ he collela ion bi eak.

The pal ${ }^{1}$ icipan ini ${ }^{1}$ ia ed a ${ }^{1}$ ial b pre ing a $b^{\mathfrak{l d}}$ on on ${ }^{1}$ he re pon e bo. The ${ }^{1} a^{l}$ ing BIC d $1 a^{\text {l }}$ ion in a ${ }^{1} e^{l}$ ing e ion a 100 m . The BIC d 1 a ion a declea ed af el ${ }^{1}$ hlee con ec ${ }^{1}$ i e collec ${ }^{1}$ iden ifica ion of ${ }^{1}$ he in el al con aining ${ }^{1}$ he BIC and inclea ed at el one incolrec ${ }^{1}$ iden ifica ion, ing a^{l} hi ee-do n-one- p ploced 1e (Le 1_{1}^{11} 1971). The init ial ${ }^{1}$ ep i e of changing ${ }^{1}$ he BIC d 1 a ion a 32 m , and ${ }^{1}$ he ${ }^{1}$ ep i e a al eled 1_{1}^{l} h each 1 e el al in diection b a fac ol of 0.5 n^{1} il ${ }^{1}$ he minim m i e of 1 m a 1 eached. Feedback a pro ided $a^{\mathfrak{l}}$ each ${ }^{1}$ ial. $A^{\mathrm{t}} \mathrm{e}^{\mathrm{l}}$ e ion a^{l} ermina ed a^{d} er 12 re el al in direc ${ }^{1}$ ion, and ${ }^{1}$ he ${ }^{1}$ hie hold for ${ }^{1}$ ha ${ }^{1}$ e ion a defined a ${ }^{1}$ he a er age d $1 a^{1}$ ion for ${ }^{1}$ he la ${ }^{1}$ eigh 1 e el al. Te^{1} e ion ele 1 epea ed fo 1^{1} ime for each pal ${ }^{1}$ icipan ${ }^{1}$, and ${ }^{1}$ he

a elage ${ }^{1}$ hie hold o er ${ }^{\text {t }}$ he ${ }^{1}$ hiee lo e^{t} e ion ${ }^{\text {the hold }}$ defined ${ }^{1}$ he pal ${ }^{1}$ icipan ${ }^{1}$, ${ }^{1}$ hi e hold.
$\mathbf{E}_{\mathbf{v}}$. - 2: I . . d D a T_{-}.. d
Pa - c, a - Ten o ngel ad ${ }^{1}$ (3 female, 7 male, 1922 1 old, 1 ecl 1 ed fiom ${ }^{t}$ he Uni el $\frac{1}{1}$ of Tol on ${ }^{1}{ }^{1}$ a Mi i a ga) and 11 older ad 17 female, 4 male, 63751 old, 1ect il ed fiom ${ }^{1}$ he local comm nil pal icipa ed in e pet imen 2. None of he pal ${ }^{l}$ icipan had an hi ${ }^{1}$ ol of heal ing di ol del , and none. ed hear ing aid. All pal icipan ga e^{l} heil $11_{1}^{1 t}$ en informed con en ${ }^{1}$ o pal icipa e in ${ }^{1}$ he e petimen and ele paid a mode ${ }^{1}{ }^{1}$ ipend for ${ }^{1}$ heir pal icipa ion. The cli ${ }^{1}$ el ia for pal ${ }^{l}$ icipa ion in hi e perimen ${ }^{1}$ el e^{l} he ame a in e perimen 1. The e pal ${ }^{1}$ icipan differed fiom ${ }^{1}$ ho e in e per imen ${ }^{1} 1$. Thi ee of he female older pal icipan co ld no 1 eliabl de ec ${ }^{1}$ a long (100 m) BIC, e en ${ }^{1}$ ho gh ${ }^{1}$ he had imilal heal ing le el 1^{1} h o hel oldel pal icipan . Th , dat a (incl ding ${ }^{l}$ ho e of hear ing le el) of ${ }^{1}$ he e^{t} hi ee older female pal icipan ate no 1 epol ed here.

Fig, re $6 \mathrm{ple}^{\mathrm{e}}{ }^{1}$ a elage hearing le el for bo h age gio. p a a fit ion of fie enc. Thie hold for all of he o. ngel ad 1^{1} ele ell i_{1} hin he nol maliange. The oldel ad $\mathfrak{l}^{\mathfrak{t}}, \mathfrak{1}^{\text {hie }}$ hold ere $8{ }^{\mathfrak{1}}$ o 10 dB pool er ${ }^{1}$ han ${ }^{1}$ ho e of o. ngel ad l^{l} for fie encie lo el ${ }^{\mathrm{t}}$ han 2 kH . The ${ }^{1}$ hie hold differ ence inclea ed i^{1} h fie enc for fie encie higher ${ }^{t}$ han 2 kH . The oldel pal icipan ${ }^{1}$ ate be ${ }^{1}$ chal ac el i ed a being in ${ }^{1}$ he eal ${ }^{1}$ age of plebc. \quad. $\mathbf{C}_{-1} \mathbf{a} \mathbf{b},_{1} \quad \mathbf{a}_{1}$. a $_{1} \mathbf{d} \mathbf{d}$. ${ }_{1}$ The appa1a ${ }^{1}$. and material. ed ine perimen 2 el e^{1} he ame a ${ }^{1}$ ho e ed in e pel imen 1 , e cep ${ }^{t} h^{1}(1)^{1} e^{1}$ ele cond c^{1} ed in a

bel $\left(193 \mathrm{~cm}\right.$ in leng ${ }^{1} \mathrm{~h}, 183 \mathrm{~cm}$ in $\mathrm{idt}^{\mathrm{t}} \mathrm{h}$, and 198.5 cm in heigh ${ }^{1}$), (2) ${ }^{1}$ he analog o ${ }^{1}{ }^{1}{ }^{1}{ }^{1}$ fi om ${ }^{1}$ he headphone b ffer ele amplified ia a differ en po el amplifier (Technic, SADX950), and (3) ${ }^{1}$ he di ${ }^{t}$ ance fi om each of ${ }^{1}$ he ${ }^{t}$ o lo d peak-
 chamber. ed in e perimen 2 , ${ }^{t}$ he eal deca ${ }^{1}$ ime ele 0.089 , $0.035,0.023,0.044,0.059$, and 0.025 ec for fie encie of 125 , $250,500,1000,2000$, and 4000 H , 1e pecti el.
P.c d - T o 1000 m in el al of col1ela ${ }^{1}$ ed Ga ian bloadband noi e ele ple en ed eil hel o el headphone ol lo d peakel. The 1 igh -headphone (lo d peakel) noi e in one of ${ }^{l}$ he in er al a a cop of he lef ${ }^{\mathrm{l}}$-headphone (lo d peaker) noi e. The $1 \mathrm{igh}^{1}$-headphone (lo d peaker) noi e in ${ }^{1}$ he o ${ }^{1}$ hel in 1 el al a al o iden ical ${ }^{1}{ }^{t}$ he lef -headphone (lo d peaker) noi e e cep ${ }^{1}$ for ${ }^{1}$ he $b^{1}{ }_{1}{ }^{1}$ ion of a long (100 m) BIC in ${ }^{1}$ od ced in ${ }^{1}{ }^{1}$ he middle of ${ }^{1}$ he 1000 m noi e b impl
$b^{1} 1_{1} 1_{i n g}$ an independen noi e egmen in he lef o. 1 ce. In each ${ }^{1}$ ial, ${ }^{1}$ he BIC had e al po ibilit ${ }^{1}{ }^{1}{ }_{o}$ be 1 andoml a igned ${ }^{\mathrm{t}} \mathrm{o}$ one of ${ }^{1}$ he ${ }^{1}$ o in el al of a 2IFC paradigm. The $t^{\text {a }}$ o in el al on a 1 ial ele epal a ed b 1000 m . For each in 1 el ${ }^{1}$, ${ }^{1}$ he 1000 m noi e coming fi om^{t} he lef headphone (ol ${ }^{1}$ he lef lo d peaker) al a led he 1000 m noi e coming fiom ${ }^{1}$ he 1 igh ${ }^{\text {l }}$ headphone (${ }^{1}{ }^{1}$ he $1 \mathrm{igh}^{l}$ lo d peaker) ${ }_{1}^{1}$ h ${ }^{1}$ he leng ${ }^{1} h$ of ${ }^{l}$ he in el o. nd dela ${ }^{1}$ emal icall manip l^{1} ed (ee belo). Tha ${ }^{1}$, ${ }^{\text {t }}$ he in ${ }^{1}$ el o nd dela a applied ${ }^{1}{ }^{1}$ the hole a eform boh on e^{t} and ongoing pol ion. Beca e^{t} he independen 100 m noi e egmen a ocia ed ith he BIC a al a in 1 od ced in ${ }^{1}$ he cen ${ }^{1}$ el of ${ }^{1}$ he noi e befor e^{1} he impo i_{i}^{l} ion of ${ }^{1}$ he ignal dela , he ncoliela ${ }^{1}$ ed egmen ${ }^{1}$ i elf a dela ed in ${ }^{l}$ he 1 igh eal 1 ela ${ }^{l}$ i $e^{t}{ }_{o}^{l}$ he lef b^{l} he ame amo n^{1} a ${ }^{\text {t }}$ he hole a eform dela. Fie hoie oond ele gener a ed for each ${ }^{1}$ ial. The pal ${ }^{1}$ icipan ${ }^{1}$, ${ }^{1}$ a $k \quad a^{1}{ }_{o}$ iden if hich of ${ }^{1}$ he 1 o in el al con ained ${ }^{1}$ he BIC.
The pal icipan int ia ed a ${ }^{1}$ ial b pre ing a $b^{\text {th }}{ }^{\text {t }}$ on on ${ }^{1}$ he 1 e pon e bo. The ${ }^{1} a^{l}$ ing in ${ }^{1}$ el o nd dela in a ${ }^{1} e^{1}$ ing e ion a 1 m . The in ${ }^{\mathrm{t}}$ el o nd dela a inclea ed at el ${ }^{1}$ hiee con ec ${ }^{1}$ i e collec ${ }^{1}$ iden ${ }^{1}$ ification of ${ }^{1}$ he in el al con aining ${ }^{1}$ he BIC and declea ed at el one incollec ${ }^{1}$ iden${ }^{1}{ }_{\text {ifica }}{ }^{1}$ ion ing a ${ }^{1}$ hiee- p-one-do n ploced re (Le 1^{11} 1971). The init ial ${ }^{1}$ ep i e of changing ${ }^{t}$ he in el oo nd dela a 8 m , and ${ }^{1}$ he ${ }^{1}$ ep i e a al eled batac or of 0.5 $i^{1} h$ each 1 e el al of ditection. $\mathrm{n}^{1} \mathrm{il}^{1}$ he minim m i e of 1 $m \quad a \quad 1$ eached. Feedback a pro ided a each 1 ial. A e^{1} e ion a ${ }^{1}$ el mina ted af el 121 e el al in dilection, and ${ }^{1}$ he ${ }^{1}$ hre hold for ${ }^{1}$ ha ${ }^{t}$ e ion a defined a ${ }^{1}$ he a el age dela for ${ }^{1}$ he la ${ }^{1}$ eigh ${ }^{1}$ e el al. Te ${ }^{1}$ e ion ele repea ed fo. 1^{1} ime for each pal ${ }^{1}$ icipan, and ${ }^{1}$ he be ${ }^{1}{ }^{1}$ hree ${ }^{1}$ hie hold el ${ }^{\text {t }}$ hen a el aged ${ }^{1}{ }^{1}$ ob 1 ain an e^{1} ima 1 e of ${ }^{1}$ he limi of each pal ${ }^{1}$ icipan 1, abilit $1_{0}^{1}{ }_{1}$ ole a eform infor mation a ailable in ${ }^{t}$ he noi e.

RESULTS

 I - - d D a

Fig 1e ${ }^{-7}$ ho ${ }^{1}$ he gio p a el age of ${ }^{1}$ he hol ${ }^{1} e^{1}$ BIC d $1 a^{1}$ ion ${ }^{1}$, hich ${ }^{1}$ he BIC co ld be de ec ${ }^{1}$ ed ndel bo h^{1} he headphone- ${ }^{1}$ im la 1 ion condi ${ }^{i}$ ion and ${ }^{1}$ he lo d peakel $-~^{1}$ im la${ }^{t}$ ion condi ion for ${ }^{t}$ he ${ }^{t}$ o age gro p. Under elt hel ${ }^{t}$ he

headphone- ol ${ }^{1}$ he lo d peakel - ${ }^{1}$ im la ion condì ion, o ngel pal ${ }^{\text {ichipan }}$ ele able ${ }^{1} \mathrm{o}$ de ${ }^{1}{ }^{1}{ }^{1}$ hol ${ }^{\mathrm{l}}$ el BIC ${ }^{1}$ han oldel pal ${ }^{1}$ icipan , indical ing a 1 ed c^{1} ion in en $1_{1} i_{1}^{1}{ }_{0}^{1}{ }^{1}$ he BIC
$i^{1} h$ age. Under ${ }^{1}$ he headphone- ${ }^{1}$ im la 1 ion condi ${ }^{1}$ ion, on a elage, o ngel pal icipan co ld de ec a BIC appio ima el 4.5 m long (median $=4 \mathrm{~m}$), hel ea older pal ${ }^{1}$ icipan co. ld deec a BIC ho edia ion a appio ima el 8.5 m (median $=8.1 \mathrm{~m}$). Under ${ }^{\mathrm{t}}$ he lo d peaker - ${ }^{1}{ }^{1} \mathrm{im}$ la ion condi ion, ${ }^{1}$ he ${ }^{t}$ hie hold for de ${ }^{1}{ }^{1}$ ing ${ }^{1}$ he BIC a 2.3 m (median $=2.4 \mathrm{~m}$) for ${ }^{1}$ he o. ngel glo p and 3.4 m (median $=3.2 \mathrm{~m}$) for ${ }^{1}$ he oldel gio $p_{\dot{1}}$ The hol ${ }^{1} \mathrm{e}^{\mathfrak{i}}$ BIC d $1 a^{1}$ ion for indi id al pal icipan ${ }^{1}$ nder ${ }^{1}$ he 1 o ${ }^{1}$ im la ion condi ion ate ho n in Fig. 1 e 8, Table 1, (for o ngel pal ${ }^{1}$ icipan ${ }^{1}$) and Table 2 (for older pal icipan). $\mathrm{No}^{1} \mathrm{e}^{\mathrm{t}} \mathrm{ha}^{1}$ ${ }^{t}$ hele i m ch mole ar iabili ${ }^{\mathfrak{L}}$ in ${ }^{1}$ he hold for oldel ${ }^{\mathrm{t}}$ han for o ngel ad l_{i}^{1}, i_{i}^{l} h fi e of he older ad l^{1} ha ing d $1 a^{1}$ ion ${ }^{1}$ hie hold i_{1} hin ${ }^{1}$ he 1 ange of ${ }^{1}$ ho e ob el ed fol or ngel ad 1 . Thi inclea e in at iabilil ${ }_{1}^{l} h$ age ha been fo nd in

TABLE 1. BIC
$10 \ldots$ ~. (.)

Participants	SM	SA	CL	CC	WL	IZ	NKN	MSD	VB	RP
Loudspeaker	4.2	2.3	2.4	2.6	1.0	2.9	1.0	2.4	1.5	2.3
Headphone	8.6	4.5	4.3	3.3	4.0	4.0	2.2	3.9	7.0	3.0

BIC, break in correlation.
${ }^{1}$ hel ${ }^{1}$ die. For e ample, Schneider and Pichola-F lles (2001) ho ed ${ }^{1}$ ha helea man oldel ad ${ }^{1}$ had gap de ec ion ${ }^{1}$ hie hold ${ }^{1}$ ha ${ }^{1}$ ele ${ }^{1}$ hin ${ }^{1}$ he 1 ange fo. nd for o. ngel ad \mathfrak{l}^{1}, $a \cdot b^{t^{1}}$ an 1 ial n mber had ${ }^{1}$ he hold in e ce of ${ }^{1}$ hi 1 ange.
A^{t} o be een- $\mathrm{bjec}^{\mathrm{d}}$ (o. ngel, older) b^{t} o ${ }^{\frac{1}{1} \text { hin- }}$ bjec^{1} (headphone, lo d peakel) mi ed anal i of al iance (ANOVA) did no 1 e eal a ignifican in el ac ion be een age grop (o. ngel, oldel) and ${ }^{\text {fim }} 1$-ple en at ion ${ }^{1}$ pe (headphone, lo d peakel $)\left(F_{1,18}=2.890 ; \mathrm{MSE}=7.338 ; p=0.106\right)$ b^{t} did elif ${ }^{1}$ ha ${ }^{1}$ he main effec ${ }^{1}$ of ${ }^{1}$ im 1 -ple en a ${ }^{1}$ ion ${ }^{t}$ pe ($F_{1,18}=18.385 ;$ MSE $=7.338 ; p<0.001$) and age gio p $\left(F_{11^{18}}=7.087 ;\right.$ MSE $\left.=9.160 ; p=0.016\right)$ ele bo h h ignifican ${ }^{18}$ Hence, older ad ${ }^{1}$ ha e higher ${ }^{1}$ he e hold ${ }^{1}$ han o. ngel
 e i ${ }^{1}$ ha ${ }^{1}$, in ${ }^{1}$ he o.nd field, comb filt eting c e lo el ${ }^{\text {t }}$ he h old b^{t} he ame amo n^{1} in bo ${ }^{1} h$ o. ngel and older ad l^{l} hen ${ }^{t}$ hele i no dela be een lef and 1 igh noi e.

An e amina ion of Table 2 indica ${ }^{1}$ e ${ }^{1}$ he pre ence of a po ${ }^{1}{ }^{1}$ ial o ${ }^{1}$ liel in ${ }^{1}$ he headphone condi ${ }^{1}$ ion (pal ${ }^{1}$ icipan ${ }^{1} A M$). To check he her ${ }^{t}$ hi o. ${ }^{t}$ liel a 1 e pon ible for ${ }^{t}$ he main
 1 emo ed. The main effec ${ }^{1}$ of age and condr ion 1 emained ignifican , and ${ }^{1}$ hele a no in el act ion be een age and condit ion. Hence, e ha e $1 \mathrm{e}^{\mathrm{t}}$ ained ${ }^{\mathrm{l}}$ hi po ible o. ${ }^{\mathrm{t}}$ lier in ${ }^{1}$ he 1emaining anal e.

For o. ngel pal icipan ${ }^{1}$, ${ }^{1}$ he collela ion be ${ }^{1}$ een ${ }^{1}$ he ${ }^{1}$ hie hold nder lo d peaker pie en a ${ }^{1}$ ion and ${ }^{1}$ ha ${ }^{1}$, nder headphone pre en at ion a 0.521, hich a no ignifican ${ }^{1}$ ($F_{1,8}=2.987$; MSE $=0.734 ; p=0.122$). Fol oldel pal ${ }^{1}$ icipan ${ }^{1}$, he coll ela ion be ${ }^{1}$ een ${ }^{1}{ }^{1}{ }^{1}$ he hold nder lo d peakel pie en a^{1} ion and ${ }^{l}$ ha ${ }^{l}$. nder headphone pre en ${ }^{1}$ ion a 0.104 , hich a al o no ${ }^{1}$ ignifican ${ }^{1}\left(F_{1,8}=0.088 ;\right.$ MSE $=3.056$; $p=0.774$).

To ee he her ${ }^{1}$ he BIC ${ }^{1}$ hie hold ele rela 1 ed ${ }^{1}$ o a dio$\mathrm{me}^{1} \mathrm{ic}^{1}{ }^{1}$ hie hold, e con ela ${ }^{1}$ ed BIC ${ }^{1}$ he hold ithp.e-one a elage (PTA, a elaged acto ${ }^{1}$ he ${ }^{t}$ o ear) for bo ${ }^{1} h$ lo -fie encie (0.252 kH , LF-PTA), and high-fie encie ($38 \mathrm{kH}, \mathrm{HF}-\mathrm{PTA}$) in bo ${ }^{1} \mathrm{~h}$ o. ngel and older ad I^{L}. None of ${ }^{t}$ he e consela ton ete ignifican in el hel o. ngel ol oldel ad ${ }^{1}$. For ${ }^{1}$ he o ngel ad ${ }^{1}$, the collela ion be een BIC ${ }^{1}$ hie hold and LF-PTA ele -0.1 $(p>0.05)$ and $0.156(p>$ 0.05) for headphone and lo d peaker pie en a ${ }^{1}$ ion, 1 e pec${ }^{1}{ }_{i}$ el ; ${ }^{1}$ he collela ion be ${ }^{1}$ een BIC ${ }^{1}$ hie hold and HF-PTA ele $0.541(p>0.05)$ and $0.262(p>0.05)$ for headphone and lo. d peaker ple en at ion, 1e pecti el. For older ad l^{t}, ${ }^{\text {t }}$ he
contela ion be een BIC ${ }^{1}$ he hold and LF-PTA ele 0.272 ($p>0.05$) and $-0.04(p>0.05)$ fol headphone and lo dpeaker pre en a ${ }^{1}$ ion, $1 \mathrm{e} \operatorname{pec}^{1} \mathrm{i}$ el ${ }^{1}{ }^{1}$ he collela ${ }^{1}$ ion be ${ }^{1}$ een BIC 1 hie hold and HF-PTA ele $0.284(p>0.05)$ and 0.434 ($p>0.05$) fol headphone and lo d peakel ple en a ${ }^{1}$ tion,

 PTA in o ngel ol oldel ad 1^{1}.

E_{r}, - 2: T- Mar I . . dD D a

Fig 1e 9 ho ${ }^{1}$ he gro p mean of ${ }^{1}$ he longe ${ }^{1}$ in ${ }^{1}$ el o nd dela $a^{\text {l }}$ hich o.ngel ol older pal icipan ${ }^{{ }^{1}}$ ele able ${ }^{{ }^{1}}{ }_{o}$ de ${ }^{1}{ }^{1}{ }^{1}$ a 100 m BIC. Undel ${ }^{1}$ he headphone- ${ }^{1}$ im ${ }^{1}{ }^{1}$ ion condi${ }^{\mathrm{t}}$ ion, bo ${ }^{1}{ }^{\mathrm{h}}$ he mean $(13.8 \mathrm{~m})$ and median $(11.9 \mathrm{~m})^{\mathrm{t}}$ he hold for o. ngel pal ${ }^{\text {c }}$ icipan ${ }^{1}$ ele longel ${ }^{1}$ han ${ }^{1}$ ho e (mean $=8.6$ $\mathrm{m} ;$ median $=8.7 \mathrm{~m}$) fol oldel pal ${ }^{\text {icipan }}{ }^{1}$. Al o, ndel ${ }^{1}$ he lo. d peaker- ${ }^{1}{ }^{\text {im }}{ }^{1}{ }^{\mathrm{l}}$ ion condit ion, bo ${ }^{1}{ }^{1}{ }^{1}$ he mean $(23.5 \mathrm{~m})$ and median $(26.1 \mathrm{~m})^{\text {t }}$ he hold for o nger pal ${ }^{\text {t }}$ icipan te longel ${ }^{t}$ han ${ }^{t}$ ho e (mean $=10.6 \mathrm{~m}$; median $=11.2 \mathrm{~m}$) fol older pal ${ }^{1}$ icipan ${ }^{1}$. Th ${ }^{1}$ hele a a b^{1} an ial 1 ed c^{1} ion in ${ }^{1}$ he abill ${ }^{1}{ }^{1}$ o de ect an in el o nd dela ${ }_{1}^{t} h$ age.
A^{t} o be een- bjec (o. ngel, oldel) b ${ }^{\text {l }}$ o ${ }^{\text {l }}$ hinbjec 1 (headphone, lo d peaker ple en a ${ }^{1}$ ion) ANOVA fo nd
 ${ }^{1}$ ion ${ }^{1}$ pe (headphone ol lo d peakel) a ignifican ${ }^{1}\left(F_{1,1 / 5}=\right.$ 5.722; MSE $=23.349 ; p=0.029$), a \quad a ${ }^{\mathfrak{t}}$ he main effec of age g1o $\mathrm{p}\left(F_{1,16}=19.959\right.$; $\mathrm{MSE}=36.299 ; p<0.001$), and ${ }^{\mathrm{t}}{ }_{\text {im }} 1$-ple en a ${ }^{\text {ton }}{ }^{\mathrm{t}}$ pe ($F_{1,16}=13.149$; MSE $=23.349$; $p=0.002$). Sepa a ${ }^{1}$ e ANOVA for headphone and lo d peakel pie en a ${ }^{\text {t }}$ ion ho ed ${ }^{\text {tha }}{ }^{\text {t }}$ he age effec ${ }^{\mathrm{d}}$ a ignifican for bo h lo d peakel ($F_{1,19}=20.805$; MSE $=35.579 ; p<0.001$) and headphone- ${ }^{1}$ im la ion condi ion ($F_{1,16}=4.899$; MSE $=$
 ${ }^{1}$ he incl emen ${ }^{1}$ in pel for mance going fiom headphone ${ }^{1} \mathrm{o}$ lo dpeaker condí ion a la gel for o. ngel ${ }^{1}$ han for older ad 1^{1}.
 ${ }^{t}$ he longe ${ }^{1}$ dela be ${ }^{1}$ een le ${ }^{d}$ and 1 igh noi e ${ }^{1}$, hich each indi id al co ld de ec a 100 m BIC in ${ }^{t}$ he o nd field a a f nc ${ }^{1}$ ion of ${ }^{t}$ he longe ${ }^{1}$ dela ${ }^{t}$ he co. $1 d \operatorname{de}^{t} \mathrm{ed}^{1}$ a 100 m BIC nder headphone condi ion (Fig. 10). The do ${ }^{\text {ti }}$ ed line $($ lope $=$ 1.0) 1eple en ha e o. ld e pect if hele ele no difference be een headphone and o nd field condition. Thi fig te ho ${ }^{t}$ hat all pal ${ }^{\text {icipan }}{ }^{1} b^{t}$ one pel for med be ${ }^{11}$ e ${ }^{1}$ ndel o. nd-field condil ion ${ }^{1}$ han. nder headphone condil ion. Pal^{1} ic. lal 1 , fi e of ${ }^{\text {t }}$ he o ngel ad l^{t} pelformed mak kedl

TABLE 2. BIC
$10 \sim($.

Participants	BR	AG	ES	BM	JZ	LW	GH	JSF	EW	AM
Loudspeaker	2.8	3.9	4.0	6.1	5.7	3.7	1.0	2.7	1.4	2.4
Headphone	4.0	4.9	4.9	9.5	12.6	6.8	1.8	9.5	12.2	18.7

be ${ }^{\text {dl }}$ el ndel o nd-field condì ${ }^{t}$ ion ${ }^{\mathrm{t}}$ han ndel headphone condilion (ho e ho e da a poin ${ }^{1}$ ale fal ${ }^{1}$ he ${ }^{1}$ fiom ${ }^{1}$ he diagonal line). The e1e. $1^{\text {g }}$ ge ${ }^{1 t}$ ha 1 ome o ngel pal ${ }^{1}$ icipan (b^{1} no older one) eem ${ }^{\text {o del }}$ e a b^{t} an ial benefi nder o nd field condi ion (more ${ }^{1}$ han do bling ${ }^{1}$ he longe ${ }^{1}$ dela a^{t} hich he co ld de ec a BIC), e en ${ }^{\mathrm{t}}$ ho gh he ele no nece at il ${ }^{1}$ he be ${ }^{1}$ pal icipan ${ }^{1}$. ndel ell hel o nd-field condi ion ol headphone condil ion. Hence, he great el impro emen in ${ }^{1}$ he pelfor mance of o ngel ad I^{t} hen going fi om headphone ${ }^{1} \mathrm{o}$ lo d peaker pie en a^{t} ion can be $\mathrm{at}_{1 \mathrm{ib}}{ }^{\mathrm{t}}$ ed ${ }^{1}{ }_{0}{ }^{1}$ he fac ${ }^{t}{ }^{l}$ hat half of ${ }^{l}$ he o. ngel ad l^{l} implo ed markedl , hel ea ${ }^{t}$ he o^{1} her half ho ed l^{Tl} le implo emen ${ }^{1}$. The longe ${ }^{\mathrm{t}}$ dela for indi id al pal ${ }^{l}$ icipan ${ }^{1}$. ndel each of ${ }^{l} \mathrm{he}^{\mathrm{t}} \mathrm{o}^{\mathrm{l}}$ pe of ${ }_{i}{ }_{i m}$ la ion condí ion a e al o ho n in Table 3 (for o ngel pal ${ }^{1}$ icipan ${ }^{1}$) and Table 4 (for older pal icipan ${ }^{1}$). Unlike ${ }^{1}$ he
ca e for dialion ${ }^{1}$ hre hold, here ${ }^{1}$ here ${ }^{1}$ more atiabili ${ }^{\text {l }}$ among ${ }^{\text {th }}$ he o ng ${ }^{1}$ han among ${ }^{\text {t he older li }}{ }^{1}$ enel. F 1^{t} hel mole, ${ }^{1}$ here i no indica ${ }^{1}$ ion ${ }^{1}$ ha ${ }^{2}$ oldel ad l^{1} benefi fiom ${ }^{1}$ he lo. d peaker pre en at ion, her ea half of ${ }^{1}$ he o nger ad ${ }^{d}$ e hibi a lag ge benefit fi om he lo d peaker pie en a ion.

For o ngel pal icipan ${ }^{1}{ }^{1}$ he colvela ion be ${ }^{1}$ een ${ }^{1}$ he ${ }^{1}$ hie hold nder headphone- ${ }^{i}$ im la ion condi ion and ${ }^{1}$ ha ${ }^{l}$ nder lo d peakel - ${ }^{1}$ im la ion condil ion a 0.214 , hich a no ${ }^{1}$ ignifican ${ }^{1}\left(F_{1, \S}=0.383 ; \mathrm{MSE}=65.362 ; p=0.553\right)$. Fol older pal icipan ${ }^{1},{ }_{q}$ he collela ion be een ${ }^{1}$ he hie hold nder headphone- ${ }^{1}$ im ${ }^{1}{ }^{1}$ ion condi ${ }^{1}$ ion and ${ }^{1}$ ha ${ }^{1}$. ndel lo d-peakel- ${ }^{1}$ im la 1 ion condi ion a 0.422 , hich a al o no ${ }^{1}$ ignifican $^{\mathrm{t}}\left(F_{1,6}=1.299 ; \mathrm{MSE}=2.919 ; p=0.298\right)$.
To ee he hel he ma im m in el o nd dela ele 1 ela 1 ed 1 o a diome ${ }^{1}$ ic 1 hre hold, e colvela ${ }^{1}$ ed 1 he in el o. nd dela ${ }^{\mathrm{l}} \mathrm{h}$ PTA fol bo ${ }^{1} \mathrm{~h}$ lo $(0.252 \mathrm{kH}$, LF-PTA), and high (38 kH , HF-PTA) fie encie. Fol ${ }^{1}$ he o ngel ad ${ }^{\mathrm{l}}$, ${ }^{t}$ he collela ion be ${ }^{l}$ een he longe ${ }^{t}$ dela a^{l} hich a BIC a de ec ${ }^{1}$ able and LF-PTA ele $0.288(p>0.05)$ and $0.291(p>$ 0.05) for headphone and lo d peaker pie en at ion, 1 e pec${ }^{1}{ }_{i}$ el ; ${ }^{1}$ he colselation be ${ }^{1}$ een ${ }^{1}$ he longe ${ }^{1}$ dela and HF-PTA el e $0.399(p>0.05)$ and $0.276(p>0.05)$ for headphone and lo d peaker pre en ation, 1e pecti el. For older ad ${ }^{l}$, ${ }^{1}$ he colvela ion be een ${ }^{1}$ he longe ${ }^{l}$ dela and LF-PTA ele $0.282(p>0.05)$ and $-0.15(p>0.05)$ for headphone and lo d peaker ple en ${ }^{1}{ }^{1}$ ion, 1 e pec ${ }^{1}$ i el ; ${ }^{1}$ he collela ${ }^{1}$ ion be${ }^{1}$ een ${ }^{1}$ he longe ${ }^{1}$ dela and HF-PTA ere $0.338(p>0.05)$ and $-0.27(p>0.05)$ for headphone and lo d peakel ple en${ }^{1}{ }^{1}$ ion, 1 e pecc ${ }^{1}$ el. Hence, ${ }^{1}$ hele i el $l^{1 t}$ le e idence ${ }^{1}$ ha ${ }^{1}$ he longe ${ }^{\text {t }}$ in ${ }^{1}$ el o. nd dela ${ }^{\mathrm{t}}$ hich a 100 m BIC can be de ected i consela ed ilh either lo -or high-fie enc PTA in o ngel ol older ad ${ }^{1}$.

DISCUSSION

Z . I - . d D a
In 1 he ple en ${ }^{1}$ d, nder headphone li^{t} ening condil ion $i_{1}^{1} h^{1}$ he 0 m in ela 1 al dela, o nger ad l^{1} pal icipan co ld de ec a 4.5 m BIC be een Ga ian bioadband noi e $\left(010,000 \mathrm{H}_{\mathrm{t}}\right)$, hich i light 1 la gel ${ }^{1}$ han ${ }^{1}$ he mean ${ }^{1}$ hi e hold $(2.34 \mathrm{~m})$ of he $1 / 0 / 1$ in el a 1 al conela ion change in el al mea. 1ed in eigh pal icipan ($20 \quad 35$ 1 old $)$ in ${ }^{1}$ he ${ }^{1}$ d b Boehnke e ${ }^{t}$ al. (2002) ing a bi oadel band noi e (0222,050 $\mathrm{H}), \mathrm{b}^{\mathrm{t}}$ maller ${ }^{\mathrm{t}}$ han ${ }^{1}$ he mean bina 1 al gap ${ }^{1}$ hie hold (5.3 m) mea 1 ed in i pal icipan (ho e age ele no proided) in he ${ }^{\mathrm{t}}$ d b Akelo d and S mmel field (1999) ing bandpa noi e $(100500 \mathrm{H})$. The e 1 e . I^{t} confirm ${ }^{1}{ }^{\mathrm{h}} \mathrm{h}^{\mathrm{l}}$ h man li ${ }^{1}$ enel $i_{1} h$ nol mal heal ing ha e a high en 1 i i $i l_{0}$ $a^{1} 1$ an ien BIC hen ${ }^{1}$ he in ela 1 al dela i elo. Fol older ad $\mathrm{I}^{1} \mathrm{e}^{\mathrm{t}}$ ed in ${ }^{1}$ he pre en ${ }^{1}$ d , ${ }^{1}$ heil mean ${ }^{\mathrm{t}}$ hie hold of de ec ${ }^{1}$ ing ${ }^{1}$ he BIC. nder ${ }^{1}$ he headphone- ${ }^{1}{ }^{i m}$ la 1 ion condi ${ }^{t}$ ion a 8.5 m , hich a ignifican'l latger ${ }^{1}$ han ${ }^{1}$ ha for o ngel pal icipan . Older ad ${ }^{1} 1$ ele al o m ch mole al iable ${ }^{1}$ han o ngel ad I^{L}, a pa ${ }^{\mathrm{Al}^{1}} \mathrm{en}^{\mathrm{t}}$ hat ha been ple io 1 no ed i^{l} h 1 ela ion ${ }^{1}{ }_{o}$ gap de ect ion ${ }^{l}$ die (Schneider \& Pichol a-F. llel 2001).

Older ad ${ }^{1}$ co ld be le en $i_{1}^{1} e^{1}$ o a BIC ${ }^{1}$ han o ngel ad 1^{1} beca e of age-1 ela ed $1 \mathrm{ed}^{1} \mathrm{c}$ ion in a diome 1 ic en i${ }^{1}{ }^{1} 1^{1}$. To in e^{1} igate he hel ${ }^{1}$ he age-1 ela ed change in ${ }^{1}$ he BIC t hie hold ele ca ed b age-1ela ed deciea e in pec-

TABLE 3. T $10 \ldots \ldots$ - \ldots.

Participants	DR	DV	CL	MR	ZN	TL	RC	FR	SM	CT
Loudspeaker	25.1	27.1	15.9	12.7	28.6	29.8	32.1	20.1	32.0	11.9
Headphone	24.5	25.6	14.3	11.3	9.0	9.6	12.4	6.5	14.7	10.0

${ }^{1}$ al en iti il , e colrela ${ }^{1}{ }^{1}{ }^{1}$ he BIC ${ }^{1}$ hie hold i_{1}^{1} h a dio-
 bo h high and lo fie encie. The e coll ela ion, ho e el, pro ided el $1_{1}^{1 t}$ le e idence for a $1 \mathrm{ela}^{\mathrm{l}}$ ion hip be ${ }^{1}$ een a diome 1 ic heal ing lo and en 1 mote likel hat lo e in en iti it o BIC aterela ed o o hel age-1 ela ed change in ${ }^{1}$ he a dil or ${ }^{1}$ em, ch a a lo in ne 1 al nchion. Pre io ${ }^{1}$ die ha e ho n^{1} ha older li ${ }^{1}$ ener i_{i}^{l} h nol mal hear ing ha e maller ma king le el differ ence (MLD) ${ }^{1}$ han oongel-ad 1^{1} li $^{\text {l }}$ ener (e.g., Gio e e ${ }^{1}$ al. 1994; Ol en é al. 1976; Pichor a-F. lleı \& Schneidel 1991, 1992, 1998; S 1 o e e al. 1998). Pichol a-F. lle and Schneider (1992) ha e gge ${ }^{1}{ }^{\text {l }}$ ha malle MLD in older ad ${ }^{\text {l }}$ a e ca ed b lo e in ${ }^{1}$ emporal nchion be een ${ }^{1}$ he ${ }^{1}$ o eal (i.e., an inclea e in tempor al jll el ; D. 1 lach 1972). Hence, age-1 ela ed lo e in temporal nchi on co ld acco, n^{1} for bo h malle MLD and higher BIC ${ }^{1}$ hie hold in oldel ${ }^{1}$ han in o nger ad l^{l}
Ple io f nct ional magne ic 1 e onance imaging and magne oencephalogiaph ${ }^{1}$, die ha e^{1} gge 1 ed $^{1}{ }^{1} 1^{1}$ in h man ${ }^{1}$ he a dil or col e i in ol ed in pioce ing in ela 1 al collela ion (e.g., B dd e ${ }^{1}$ al. 2003; Chal e e al. 2005; Hall e al. 2005; Zimmel \& Macal o 2005). Th , il i impol an in $\mathrm{f}_{\mathrm{i}}^{1} 1 \mathrm{e}$ ${ }^{1}$. die ${ }^{1} 0$ er if he hel ${ }^{t}$ hele ate age-r ela ${ }^{\text {a }}$ ed al er at ion of he
 ${ }^{1}$ he col ${ }^{\text {ical le el. }}$

Ano her po ibili i^{1} ha age-r ela ed change in ${ }^{1}$ he abili ${ }^{1}$ ${ }^{1}$ o ded $^{1} e^{1}$ a BIC co ld 1 eflec 1 age-1 ela ${ }^{1}$ ed change in ${ }^{1}$ he i e of ${ }^{1}$ he ${ }^{1}$ empor al indo o el hich in el a 1 al compalion occ. 1. Se et al in $e^{1}{ }^{\text {iga }}$ or ha eplopo ed ${ }^{\text {t }}$ ha bina 1 al compati on ${ }_{1}$ a e per formed i_{1} hin a ${ }^{1}$ emporal indo applied ${ }^{l}{ }_{1}^{l}$ he inp ${ }^{11}{ }_{0}$ ${ }^{1}$ he ${ }^{\text {to eal }}$ (e.g., Beln ${ }^{1}$ ein e e ${ }^{1}$ al. 2001; Mool e e ${ }^{1}$ al. 1988). Accor ding ${ }^{1}{ }_{0}{ }^{2} \mathrm{hi}$ no ion, ${ }^{1}$ he a dit ol ${ }_{1}$ em effec i el in egia ${ }^{1}$ e bina 1 al informa ion falling i^{1} hin ${ }^{1}$ hi ${ }^{1}$ emporal indo. Hence, hen ${ }^{\text {ther }}$ hel a change in an in ela. 1al a iable d 1 ing ${ }^{l}$ hi indo, ${ }^{1}$ hi in egration ploce 1 ed ce ${ }^{1}$ he in el nal ol effec ${ }^{1}$ i e al e of ${ }^{1}$ hi change. For e ample, if ob el el ele ${ }^{1}$ o cen el ${ }^{1}$ he ${ }^{1}$ empor al indo a^{11} he midpoin ${ }^{1}$ of each of he ${ }^{1}$ o bloadband noi e ple en ed on a 2IFC ${ }^{1}$ iial in e perimen 1 (i^{1} h he BIC occ 11 ing 1 andoml in he cen el of one of ${ }^{1}$ he e noi e), ${ }^{1}$ he co ld compale ${ }^{1}$ he in ela 1 al informa ion a ailable in ${ }^{1}$ hi indo for each of ${ }^{1}$ he 1 o noi e ${ }^{1}$ o de ${ }^{1}$ el mine hich one con ained ${ }^{1}$ he BIC. A ming ${ }^{1}$ ha ${ }^{1}$ o. ngel and oldel ad l^{t} 1e iled ${ }^{1}$ he ame amo n^{1} of infolma ion ${ }^{1}$ o reach ${ }^{1}$ he ${ }_{1}{ }^{1}$ hi e hold for de $^{1} e^{1}$ ing a BIC (e.g., ${ }^{1}$ he ame differ ence in in er a 1 al coll ela ion), age differ ence in he hape or id h of ${ }^{1}$ he ${ }^{t}$ emporal indo co ld lead ${ }^{1}$ o age differ ence in pel for mance. Fol e ample, ppo e ${ }^{\text {t }}$ he pal ici-

[^3]pan ${ }^{1}$ in e petimen 1 applied a ec 1 ang la ${ }^{1}$ empor al indo (arec ${ }^{1}$ ang lal indo i, ed hel ${ }^{1}{ }_{o}$ implif ${ }^{1}$ he de c^{1} ip 1 ion of ho age difference in emporal indo i e co ld acco n^{l} for age difference in de ec ing a BIC) ${ }^{1}{ }^{1}{ }^{1}$ he ${ }^{1}$ ime- al ing in el a 1 al consela ion. For ${ }^{1}$ he dio ic noi e i^{l} ho ${ }^{1 t}$ he BIC, ${ }^{1}$ he in el a 1 al colselation o ld be 1.0 for bo h age gio p, independen of indo i e (a ming ${ }^{1}$ ha ${ }^{1}$ he ${ }^{t}$ emporal indo a maller ${ }^{1}$ han ${ }^{1}$ he leng ${ }^{1} h^{1}$ of ${ }^{l}$ he ${ }^{1}$ im 1). Ho e er, ${ }^{1}$ he in ${ }^{1}$ ela 1 al colvelation for a noi e ${ }^{1} \mathrm{~h}$ a hol ${ }^{1}$ BIC ill depend on indo i e. S ppo e^{t} he $1 \mathrm{ec}^{\text {l }}$ ang. lal indo i e for o. ngel and older ad ${ }^{\text {l }}$ ele 4 and 8 m , re pec i i el . When a 6 m BIC i pre en ed, he in el a 1 al conselat ion of ${ }^{1}$ he
 ${ }^{1}$ han elo for older ad l^{d} beca e older ad l^{l} o ld be comp ${ }^{1}$ ing in ela 1 al collela ion o el 8 m of lef ${ }^{\mathrm{d}}$ - and $1 \mathrm{igh}^{1}$-eal ignal here ${ }^{1}$ he colsela ${ }^{1}$ ion a 1.0 for ${ }^{1}$ he fil ${ }^{1}$ and la ${ }^{\mathrm{t}} \mathrm{m}$ of ${ }^{\mathrm{l}}$ he 8 m compali on and eloding ${ }^{1}$ he middle 6 m . Hence ${ }^{\mathrm{t}}$ he differ ence in in ${ }^{1}$ el a 1 al collela ion be ${ }^{1}$ een ${ }^{1}$ he noi e egmen $i_{1} \mathrm{~h}$ and i^{1} ho ${ }^{\text {t }}$ a BIC o ld be la gel for o. nger ${ }^{2}$ han for older ad 1 , leading ${ }^{1} o$ an age-differ ence in ${ }^{t}$ he abili $t_{0}{ }^{1} e^{1}$ a BIC.

When ${ }^{1}$ he ${ }^{1}$ im li ele ple en ${ }^{1}$ ed o el lo d peakel ${ }^{1}{ }^{1}$ he o nd field pıo ided cel ${ }^{l}$ ain addil ional c.e, ch a ${ }^{l}$ ho e ind ced b comb filt el ing effec (Na in e^{l} al. 1979). The e c. e co ld aid li ${ }^{t}$ ener ${ }^{1}{ }_{o}$ de ${ }^{1}{ }^{1}{ }^{t}$ he t_{1} an ien bleak in in el o. nd collela ion. The da a fiome perimen 1 gge ${ }^{11}$ hat bot h o ngel and older ad ${ }^{1}$ ere able ${ }^{t}{ }_{0}$. e^{t} he ecce ${ }^{1}{ }_{o}$ de ec a hol ${ }^{\text {el }}$ BIC hen ${ }^{\text {l }}$ he e c e ele ple en (lo d peakel pre en ation) ${ }^{1}$ han ${ }^{1}$ he co ld hen ${ }^{1}$ he e ce ele ab en ${ }^{1}$ (headphone ple en ation). Mor eo er, e en ho gh oldel ad ${ }^{1}$ eemed ${ }^{l}$ o benefi mole ${ }^{t}$ han o ngel ad i fioma i ch fiom headphone ${ }^{1}{ }_{0}{ }^{1}$ he o nd field (Fig. 7, ${ }^{1}$ hie hold declea e^{e} in older ad $\mathrm{l}^{\mathrm{l}}=5.1 \mathrm{~m} ;^{1}$ hi e hold dect ea e in o. ngel ad ${ }_{1}=$ $2.2 \mathrm{~m})$, ${ }^{1}$ he in ${ }^{1}{ }^{1}{ }^{1}$ ac ion of age gro p and ${ }^{1} \mathrm{im} 1$-ple en a ${ }^{1}$ ion
 Hence, hen ${ }^{1}$ hele i no dela be ${ }^{t}$ een ${ }^{1}$ he lef ${ }^{d}$ - and 1 igh -eal o nd, e canno 1 ejec ${ }^{11}$ he h po he i ${ }^{1}$ hat o ngel and older ad l^{l} benefil e all fiom ${ }^{1}$ he addil ion of o nd-field c.e.
 (H ad, $\ldots \mathbf{P}_{\text {a }}$ - $\mathbf{a} \ldots$. $)$

The pie en ${ }^{1}$ d al o in e ${ }^{1}$ igat ed ho long a eform infor mat ion i a ailable ${ }^{1}{ }^{1}$ the li^{1} ener b direc ${ }^{1} 1$ mea. 1 ing ${ }^{1}$ he 1 ange of in el a 1 al dela in hich a long-d $1 \mathrm{a}^{1}$ ion (100 m) BIC i a dible. nder headphone ple en ation (accol ding ${ }^{1}{ }^{1}$ he

TABLE 4. ${ }^{T}$

Participants	ARP	XL	IL	ML	JO	PL	BD	TL
Loudspeaker	11.1	9.9	12.3	7.8	12.0	8.4	11.3	12.3
Headphone	9.7	10.2	7.5	7.1	8.2	6.9	10.2	9.3

1e $\cdot 1_{1}^{l}$ of e perimen $1, a^{1}{ }^{1}$ he elo in el a 1 al dela ${ }^{1}{ }^{1}$ he 100 m diation a ell abo e^{1} he BIC ${ }^{1}$ hie hold for all he o ngel and oldel pal icipan). T o of he o. ngel pal icipan ele able t o de ${ }^{1}$ ec $^{1}{ }^{\text {he occ }} 11$ ence of ${ }^{t}$ he 100 m BIC hen ${ }^{t}$ he dela
 condit ion (Fig. 10). No e^{1} hat dela ${ }^{1}$ hie hold ale. ${ }^{\text {l }} \mathrm{e}$ a a iable for o ngel ad ${ }_{1}^{1}$, indica ing a ide 1 ange of indi id al differ ence. Older ad 1^{1}, ho e el, alem ch mole niform ${ }_{1}^{1}$ hie pec ${ }^{1}{ }_{o}{ }^{1}$ hei abill ${ }_{1}{ }_{0}$ de ece BIC a long dela. Recall, ho e et, hat long dela ${ }^{1}$ hie hold colve pond ${ }^{5}$ o be ${ }^{\text {dt }}$ el pelformance. Hence age-1 ela ${ }^{1}$ ed pel for mance deciemen ${ }^{1} \quad$ o ld manife ${ }^{1}{ }^{1}$ hem el e a lo el ${ }^{\text {l }}$ hie hold. Beca e^{l} hie hold ate bo nded $a^{t h}$ he lo el end b^{t} he al e of 0 , poolel per for mance in a gio p of older ad $1^{1} \quad$ o ld ${ }^{\text {t }}$ end ${ }^{1}$ o 1ed ce ${ }^{1}$ he at iance in hi goop, a i ob el ed in Fig 1e 10. Hence ${ }^{1}$ he pat eln of 1 e . f^{1} in e perimen 2. gge $^{1}{ }^{1}$ hat a people age, ${ }^{1}$ heil capaci ${ }^{1}{ }^{1} 0$ de ec ${ }^{1}$ a change in coll ela ion dimini he ;

There eem ${ }^{1}$ o be ${ }^{i}$ o po ible a in hich ${ }^{1}$ he a dil or
${ }^{1}$ em of ome ong ad co ld bi idge ${ }^{t}$ empor al dela great er ${ }^{1}$ han 15 m be een correla ed lef and 1 igh eal o. nd . Fii ${ }^{1}$, ${ }^{1}$ he ao -coleelat ion $f n^{1}$ ion rela ing ${ }^{1}$ he oo ${ }^{1}{ }^{1}{ }^{1}$ of mal ched, na11o band, let - and $1 \mathrm{igh}^{2}$-eal a dit fil el co ld ha e b^{l} an ial peak ${ }_{1}^{1}$ hin ${ }^{1}$ he 1 ange of dela ${ }^{1}$ hat aue ph iologicall 1 eali able $\left(-1.5^{\mathrm{t}}\right.$ o 1.5 m$)$. If h^{t} el e^{t} o occ 1 , ${ }_{1}^{1}$ o. ld permit ${ }^{1}$ he a dit ol ${ }^{1} \mathrm{em}^{\mathrm{t}} \mathrm{o}$ di ${ }^{1}{ }_{\text {ing }}$ i h be ${ }^{\mathrm{t}}$ een collela 1 ed and independen noi e, beca e^{1} he clo -collela ion f nc${ }^{1}$ ion fol ${ }^{1}$ o independen noi e o ld be el o fol all dela

To ee ho ${ }^{\mathrm{t}}$ hi co. ld occ ${ }^{1}{ }^{\mathrm{l}}{ }^{\mathrm{t}} y(t)$ be ${ }^{\mathrm{t}}$ he o. ${ }^{1} \mathrm{p}{ }^{\mathrm{t}}$ of a na11o -band, lef eeal a dit ol fil el ${ }^{1}$ o a bl oad band noi e, $g(t)$. If ${ }^{t}$ he fil el i lineal and hif independen ${ }^{1},{ }^{1}$ hen ${ }^{1}$ he o ${ }^{1}{ }^{\mathrm{p}}$, ${ }^{t}$ of ${ }^{1}$ he mat ching 1 igh Therefore, e can comp. ${ }^{1}$ e a clo -collela ion $f \mathrm{nc}^{1}$ ion on ${ }^{1}$ he o $^{1}{ }^{1}{ }^{1}$ fiom ${ }^{1}$ he e^{1}, o fil er . Fig. 1e 11 ho nol mali ed clo -collelat ion fact ion, hen he lef - and 1 igh -eal noi e a e consela ed, for dela $\gamma=10$, and 20 m , for ${ }^{2}$ he o ${ }^{1} \mathrm{p}^{1}$ of t^{1} o mat ched gammat one a dit ol fil el ned ${ }^{1}$ o 500 H . The lef panel plo ${ }^{d}$ he nol mali ed cio -collela ion $\mathrm{f}^{\mathrm{t}} \mathrm{nc}^{1}$ ion o el

[^4]a 1 ange of dela fiom -10^{1} o 30 m . The $1 \mathrm{igh}^{1}$ panel $\mathrm{plo}^{1 \mathrm{t}}$ he ame f nction onl o el ${ }^{t}$ he 1 ange of dela ${ }^{t}$ ha migh be con idered ph iologicall 1 eali able. The parame el of ${ }^{1}$ hi gamma one fil er ha e been elec ed ${ }^{1}$ o pio ide ${ }^{1}$ he be ${ }^{1}$ fit ${ }^{1}{ }_{0}$ ${ }^{1}$ he pectal profile ${ }^{\text {t }}$ ha chat act el e a 500 H h man a dit ol fil el ($\mathrm{Pa}^{\mathrm{il}} \mathrm{el}$ on 1976), and ha an e i alen $1 \mathrm{ecc}^{\mathrm{l}}$ ang, la band $\mathrm{id}^{1} \mathrm{~h}$ of $92 \mathrm{H}(454546 \mathrm{H})$. Fig re 11 indica e^{1} hat if ${ }^{1}$ he ob el el co ld foc in on ma ched lef - and $1 \mathrm{igh}^{1}$ - eal filer at hi band id ${ }^{1}{ }^{1}{ }^{1}$ he pol ${ }^{1}$ ion of ${ }^{1}$ he nol mali ed clo collela ion $\mathrm{f}^{\mathrm{l}} \mathrm{nc}^{\mathrm{c}}$ ion ${ }^{\mathrm{t}}$ ha i^{l} in ${ }^{\mathrm{t}}$ he ph iologicall pla ible 1 ange co ld po ibl be ed ${ }^{1}$ o di ca iminat e lef ${ }^{\mathrm{k}}$ - and 1 igh ${ }^{1}$-eal colvela ${ }^{t}$ ed noi e fiom independen lef and $1 \mathrm{igh}^{\mathrm{h}}$-eal noi e hen ${ }^{1}$ he in ${ }^{1}$ el a 1 al dela i $10 \mathrm{~m}^{1} \mathrm{~b}^{\mathrm{t}}$ no ${ }^{1}$ hen I^{1} i 20 m . Ho e el, if ${ }^{1}$ he fill el id $^{1} h^{1} c^{1}{ }^{1}$ in half (Fig. 12), and ${ }^{1}$ he ob el el can foc in on ${ }^{1}$ hi fil er, ${ }^{1}$ hen he or he co ld po en iall per for m^{1} hi di climination a^{1} in ela 1 al dela a long a 20 m .

When ${ }^{1}$ im li are pre en ed o el headphone, ${ }^{1}$ i in 1 el e ${ }^{1}$ ing ${ }^{1}$ o no e^{t} hat nar1o band fil er ing can acco n^{1} for dela ${ }^{1}$ hie hold $<10 \mathrm{~m} . \mathrm{No}^{\mathrm{t}} \mathrm{e}^{\mathrm{t}}$ ha ${ }^{\mathrm{t}}$ he dela ${ }^{1}$ hie hold for all of ${ }^{\mathrm{l}}$ he older ad 1 an e le ${ }^{1}$ han 10 m in ${ }^{1}$ he headphone condil ion , hel ea ${ }^{t}$ he ${ }^{t}$ hie hold for i o ngel ad 1 al e giea el ${ }^{l}$ han 10 m in 1 he ame condi ion. Hence, 1_{1}^{l} i po ible hat all of he older ad l^{t}, and fo. 1 of ${ }^{1}$ he o ngel ad $\mathrm{l}^{\text {d }}$, e nalıo band fil el ing ${ }^{1} \mathrm{o}$ accompli h^{1} he ${ }^{1}$ a k.

Hence, in ol del fol ${ }^{1}$ he pel for mance of ome of ${ }^{1}$ he o ngel ad l ob el ed hee ${ }^{\mathrm{l}} \mathrm{o}$ be ba ed olel on cio -coniela ion of ${ }^{1}$ he o. ${ }^{1}$ p. fiom mached a dit or fil el , it eem ${ }^{t}$ ha ${ }^{t}$ he e filt el o. ld ha e ${ }^{1} \mathrm{o}$ be na11o el ${ }^{t}$ han ${ }^{t}$ ho e ple io 1 ob el ed. Ho e el, il migh be po ible ${ }^{\text {t }}$ o blidge longel in $^{\mathrm{l}}$ ela 1 al dela if natio band fil er ing of he inp ${ }^{l}{ }^{\mathrm{l}}$ each eal i follo ed b propaga ion dela of e el al milli econd (a in D. 1 lach' 1972 EC model) before bina 1 al compation au e comp ${ }^{1}$ ed. Oi ${ }_{1}^{l}$ co ld be he ca e^{1} hat nonlineal 1_{1}^{l} ie of one ol ${ }^{l}$ or ano her in a dil or proce ing co ld al o help blidge ${ }^{1}$ he e longer dela in ome indi id al. Ano her po ibill ${ }^{1}{ }^{1}$ hat highel-ol del cental mechani m co $l d$ be in ol ed in main${ }^{t}$ aining an a dil or ${ }^{1}$ ace of ${ }^{1}$ he aco ${ }^{1}$ ic a eform.

The abili ${ }^{1}$ of ome li ${ }^{1}$ ener ${ }^{1}$ o de $e^{1}{ }^{1}$ in ${ }^{1}$ el a 1 all colv ela ${ }^{1}$ ed o. nd ha al o been fo nd ple io 1 . ing indiect mea. 1 e ,

ch a ${ }^{1}$ hoea ocia ed ${ }^{1}$ hj dging idedne of in ${ }^{1}$ ela all dela ed noi e (Blodge $^{\text {th }} e^{\text {l }}$ al. 1956; Chel1 \& Ta lor 1954; Mo op \& C lling 1998) ol de ec ${ }^{1}{ }^{1}$ ing ignal in in ${ }^{1}$ el a all dela ed noie (Langfold \& Jeffie 1964). Re 1^{1} of he ${ }^{1}$ e eal ${ }^{t}$ die ha e gge ${ }^{1}{ }^{1}{ }^{1}$ hat a 1 eple en ${ }^{1}{ }^{1}$ ion of ${ }^{1}$ he
 kno ledge, ${ }^{1}$ he pie en ${ }^{t}$ d d i ${ }^{t}$ he fil ${ }^{t}{ }^{t}$, e a BIC a ${ }^{1}$ he ignal probe ${ }^{1}$ o direc ${ }^{1}$ mea $1 \mathrm{e}^{1}$ he ${ }^{1}$ emporal $\mathrm{e}^{1} \mathrm{en}^{\mathrm{l}}$ of ${ }^{1}$ he repre en at ion of aco ${ }^{t}$ ic a eform informa ion in bo ${ }^{1} h$ 0 nget and older pal icipan ${ }^{1}$. The $1 e$. f^{t} of he ple en ${ }^{t}{ }^{t} d$ ho ${ }^{1}$ hat older pal icipan in headphone condit ion co id de ec ${ }^{1 t}$ he BIC onl ${ }^{t}{ }^{\text {o }}$ o in el a 1 al dela of 10 m or le , indica ing age-1 ela ed decline in ${ }^{1}$ he abill ${ }^{d}{ }^{1}{ }_{0}$ de 1 ec ${ }^{1}$ in ${ }^{1}$ el a 1 al con ela ion o er long dela .

Older li ${ }^{t}$ ener ha e maller MLD ${ }^{t}$ han o. ngel li 1 ener pal ${ }^{\text {ic. }}$ lall 1 hen in el a al dela i in $^{1} 1$ od ced. In ${ }^{1}$ he ${ }^{1} d$ ${ }_{b}$ Pichola-F. lle and Schneider (1992), ${ }^{t}$ he ${ }^{i}$ hie hold of de ec ing a 500 H p. $1 \mathrm{e}^{\mathrm{t}}$ one again ${ }^{\mathrm{t}}$ band-limit ed hil e noi e $(0.15 \mathrm{kH})$ for oldel pal ${ }^{\mathrm{l}}$ icipan ${ }^{\mathrm{l}}$ did no differ ignifican ${ }^{1} 1$ fiom ${ }^{1}$ ha for oo ngel $\mathrm{li}^{1}{ }^{1}$ enel hen ${ }^{1}$ hele a no in el a 1 al difference for ${ }^{1}$ he 1 efer ence condi ion (N0). Ho e el, hen MLD ele plo ${ }^{\text {th }}$ ed a a $f^{\text {nct }}$ ion of ${ }^{1}$ he
 differed ignifican ${ }^{1} 1$ be e^{1} een oo ngel and older li 1 ener : There a no differ ence be ${ }^{1}$ een ${ }^{1}$ he ${ }^{1}$ o age goo p in ${ }^{1}$ he a el age MLD $\mathrm{a}^{\mathfrak{l} t}$ he minimal in er a 1 al dela $(0.25 \mathrm{~m})$, $\mathrm{b}^{\mathrm{l}}{ }^{\mathrm{l}}$ ${ }^{1}$ he a elage MLD of ${ }^{t}$ he o ngel gio p ele latgel ${ }^{t}$ han ${ }^{t}$ ho e of ${ }^{t}$ he older gio p a in el a 1 al dela e al ${ }^{t}$ o odd $\mathrm{m} \mathrm{l}^{\mathrm{t}}$ iple of ${ }^{\mathrm{t}}$ he half pet iod of ${ }^{\mathrm{l}}$ he ignal fie enc. Hence, older ad i^{i} eem ${ }^{t}$ o be le able ${ }^{t}$ han o. nger ad $i^{1} t_{o}$ blidge in ela 1 al dela in a lea ${ }^{t}{ }^{1}{ }^{t}$ a k : MLD and in ${ }^{t}$ he de ${ }^{\mathrm{t}} \mathrm{ec}^{\mathrm{t}}$ ion of a BIC.
I^{l} i al o in ${ }^{1}$ el e^{1} ing 1 o no $e^{1} e^{1}$ ha o. nger ad 1^{1} can de $e^{1} e^{1}$ a BIC a^{1} dela ${ }^{1}$ ha ${ }^{1}$ e ceed ${ }^{\text {t }}$ he ma im m dela a^{1} hich ${ }^{1}$ he lagging o nd i f ed $i^{1} h$ he leading o nd ${ }^{t}$ he plecedence effec 1). The plecedence effec ${ }^{1}$ 1 ed ce ${ }^{1}{ }^{1}{ }^{1}$ enel ${ }^{1}$, pel cep ${ }^{1}$ ion of $m{ }^{\text {l }}$ iple image in ie eabea an en iionmen ${ }^{l}$ b percep all goo ping colvela ed aco ${ }^{t}$ ic a eform fiom differen diec-

of ${ }^{1}$ he 1 eflec ion b^{t} he die ec ${ }^{t}$ a e (Li e e al. 2005) ${ }^{1}$ Th , onl af ed image i per cei ed a ol igina ing a ${ }^{1}$ or neal ${ }^{1}$ he loca ion of ${ }^{1}$ he 0.1 ce, and bo ${ }^{1}$ h locali a^{1} ion ell ol and in el ference fiom ${ }^{t}$ he 1 eflect ed a e arered ced ($\mathrm{L}^{1} \mathrm{o} k \mathrm{e}^{\mathrm{l}}$ al. 1999). Beca e dela aue al a pue en be ${ }^{\mathrm{l}}$ een ${ }^{\text {t }}$ he diect and 1 eflect ed a e coming fioma o. nd o. 1 ce, ${ }^{1}$ he a ailabill ${ }^{1}$ of a pec ${ }^{1}$ of ${ }^{1}$ he eal liel-alli ing a e o ld be e en ial if ${ }^{1}$ he 1 eflec ${ }^{1}$ ed a e coming fiom differen ${ }^{1}$ ie au e^{1} o be percep-

 a eform infor ma ion for $d 1^{1}{ }^{1}$ ion ${ }^{1}$ ha ${ }^{1}$ ale longel ${ }^{1}$ han ${ }^{1}$ he f ion $^{\text {t }}$ hie hold for ${ }^{t}$ he pi ecedence effec. For e ample, Li e ${ }^{\text {t }}$ al. (2005), ing imila1 ${ }^{1}$ im li ha e ho $n^{1}{ }^{1}$ ha fol dela ndet 9.5 m , he leading and lagging o nd ete f ed in ${ }^{1}$ o a ingle o nd ho eoligin a pelcei ed ${ }^{1}$ o be a a^{d} or neal ${ }^{1}$ he locat ion of ${ }^{\text {t }}$ he leading o. nd. Fol dela longe ${ }^{\mathrm{t}}$ han 9.5 m , o. ngel li 1 enel indica ed ${ }^{1}$ ha ${ }^{t}$ he heald ${ }^{1}$ o o nd , one coming fir om ${ }^{1}$ he loca ion of ${ }^{1}$ he leading oond ${ }^{1}$ he ${ }^{1}$ hel fiom ${ }^{t}$ he locat ion of ${ }^{t}$ he lagging ond. In ${ }^{t}$ he pre en ${ }^{1}{ }^{1}$ d, BIC ele ob el ed for dela hich e ceed ${ }^{1}$ he f ion ${ }^{1}$ he hold, indica ${ }^{1}$ ing ${ }^{1}$ ha ${ }^{d}$ a eform infor ma ion can be acce ed for petiod ${ }_{\text {ha }}{ }^{\text {t }}$ ale ome ime m ch longel ${ }^{t}$ han ${ }^{t}$ he f ion ${ }^{t}$ hie hold.

The 1e 1 of ${ }^{1}$ he ple en ${ }^{1}{ }^{1}{ }^{1}$ d al o ho ${ }^{t}$ ha for bo ${ }^{1} h$ o. ngel and older pal icipan ${ }^{1}$, ${ }^{\text {d }}$ he contela ${ }^{1}$ ion be ${ }^{\frac{1}{l}}$ en ${ }^{t}$ he longe ${ }^{1}$ dela nder ${ }^{1}$ he headphone- ${ }^{1}$ im la ${ }^{1}$ ion condi ${ }^{\frac{1}{t}}$ ion and lo - and high-fie, enc p. e^{t} one a elage ${ }^{\mathrm{t}}$ hie hold ele no ${ }^{\text {t }}$ ignifican. Th , ${ }^{1}$ he in ee li ${ }^{1}$ enel al ia ion in pel for mance can no be e plained $b{ }^{t}$ he in el ${ }^{t}{ }^{t}$ enel alia ion in heal ing ${ }^{t}$ hie hold. Moleo el, ${ }^{1}$ he ${ }^{1}$ d d b Akelo d and S mmelfield (1999) ha ho n^{t} 'ha ${ }^{\text {l }}$ hen ${ }^{\text {the }}$ he cen el fie enc of bandlimi ed (100 H) noi e a 2000 H , ${ }^{1}$ he mean BIC (bina al gap) de ${ }^{1} \mathrm{ec}^{1}$ ion ${ }^{t}$ he hold a la gel ${ }^{t}$ han 100 m . In ${ }^{1}$ her old, hen ${ }^{1}$ he $d^{1}{ }^{\text {d }}$ ion of a BIC i 100 m , fie enc componen higher than 2000 H ma no ${ }^{\mathrm{l}} \mathrm{b}^{\mathrm{t}}$ an tall con-
 bloadband noi e. Th , difference be een ${ }^{1}$ he ${ }^{t}$ o age grop canno ${ }^{1}$ be e plained b^{t} he difference in heal ing $t_{\text {he }}$ hold a high fie encie ($\geq 3000 \mathrm{H}$).

REFERENCES

Akel o d, M. A., S mmel field, A. Q. (1999). A

Copyright © Lippincott Williams \& Wilkins. Unauthorized reproduction of this article is prohibited.

[^0]: ${ }^{1}$ Depal ${ }^{1}$ men of P cholog, Speech and Hear ing Re eat ch Cen el, Ke Labol a ol on Machine Pelcep ion, Peking Uni el 1 , Beijing, China; and ${ }^{2}$ Depal men of P cholog, Cen el for Re eat ch on Biological Comm nica ion $S^{1} \mathrm{em}$, Uni el 1 of Tor on o a $\mathrm{a}^{\mathrm{l}} \mathrm{Mi}^{\mathrm{l}}$ a ga, Mi i aga, On ar io, Canada.

[^1]: *To ob ${ }^{1}$ ain a PDF file ho ing ho ${ }^{1}$ he nom mali ed ao -colsela ion f nction in Fig re 1 and 2 ede comp ${ }^{1}$ ed, plea e $\operatorname{con}^{1} \mathrm{ac}^{1} \mathrm{Br}$. ce Schneider.

[^2]: Thi depicition a me ${ }^{1}$ ha ${ }^{11}$ he head ca^{l} no o. nd hado. If he o nd hado i ${ }^{1}$ aken in ${ }^{1}$ o con ider a ion, ${ }^{1}$ he difference be een peak and ${ }^{1}$ o gh and ${ }^{1}$ he a elage po el change ${ }_{1}^{1}$ h fie enc beca e of ${ }^{1}$ he HRTF. Hence, Fig re 3 depic an pper $\operatorname{limi}^{11} o^{1}$ he f nct ional a ailabili 1 of ${ }^{1}$ he e mona 1 al and bina 1 al pectal c.e.

[^3]: In ${ }^{1}$ he Bern ${ }^{1}$ ein e ${ }^{1}$ al. (2001) model, ${ }^{1}$ he mear ing effec ${ }^{11}$ ha ${ }^{1 t}$ he indo ha on bina $1 a l$ pal ame ${ }^{1}$ el i inde ed b comp ${ }^{1}$ ing S, ${ }^{1}$ he alea ndel ${ }^{1}$ he ${ }^{1}$ empolal indo d_{1} ing $_{1}^{1}$ he probe pol ion of ${ }^{1}$ he ${ }^{\text {q }}$ im 1 (e.g., a BIC),
 en^{d} in ${ }^{t}$ im 1 . The in el nal or effect e e al e of an in el a 1 al pat ame er i

[^4]: To ob ${ }^{1}$ ain a PDF file ho ing ho ${ }^{1}$ he normali ed $\mathrm{clo}^{\text {o }}$-collela ion f nct ion and a el age po el el e comp. ${ }^{1}$ ed for ${ }^{1}$ he o. ${ }^{1} p$. ${ }^{1}$ of he efilel (Fig . 11 13), plea e con $\mathrm{ac}^{1} \mathrm{Br}$. ce Schneider.

