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Auditory frequency-following responses (FFRs) are sustained
potentials based on phase-locked neural activity preserving low-
frequency information. Some neurons in rat inferior colliculus are
excited by stimuli at either ear.This study shows that FFRs in infer-
ior colliculus can be elicited by presenting pure tone bursts with
frequencies from 225 to 4025Hz at the ipsilateral ear in anesthe-
tized rats. Moreover, chemical block of glutamate transmissions
in the contralateral inferior colliculus markedly reduced the

ipsilaterally driven FFRs, which, however, were signi¢cantly
enhancedbyblocking the contralateral dorsal nucleus of the lateral
lemniscus.Thus, FFRs in inferior colliculus to ipsilateral stimulation
were facilitated by excitatory projections from the contralateral
inferior colliculus but suppressed by inhibitory projections from
the contralateral dorsal nucleus of the lateral lemniscus.
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Introduction
The frequency-following response (FFR) is a short latency
response that mimics many acoustic waveform properties
[1,2]. Human studies show that the FFR can be affected by
top-down influences because of selective attention [3–5],
language experience [6], and clinical syndromes such as
Rett’s syndrome [7] and learning problems [8]. However, in
humans it is very difficult to investigate the neural
mechanisms underlying the mediation or modulation of
FFRs at the circuitry level. Thus, establishing animal models
is critical in this line of investigation.

Among the important auditory nuclei, the inferior
colliculus is the last nucleus in the primary auditory
pathway where FFRs can reliably be recorded, because
precise neural phase-locking is increasingly lost at succes-
sively higher levels of the brainstem-to-cortex pathway [9].
Moreover, comparisons of recordings in auditory nuclei
and far-field placements implicate inferior colliculus as a
primary source of scalp-recorded FFRs [10,11].

However, specific coding mechanisms in inferior collicu-
lus underlying FFRs remain elusive, especially the dynamic
interaction of excitatory and inhibitory influences conver-
ging on the central nucleus of the inferior colliculus. The
present research directly evaluates the major excitatory
projection from the contralateral central nucleus of the
inferior colliculus through the commissure of inferior
colliculus, as well as the contralateral dorsal nucleus of
lateral lemniscus that has been shown to be an important
GABAergic nucleus in the auditory brainstem of the rat and
other mammals [12–15]. Effects of these projection pathways

were studied by microinjecting the broad-spectrum gluta-
mate receptor blocker kynurenic acid (KYNA) into the
contralateral central nucleus of the inferior colliculus and
the contralateral dorsal nucleus of the lateral lemniscus.

Methods
Animal preparation
Experiments were conducted in 24 male adult Sprague–
Dawley albino rats (300–400 g) obtained from the Beijing
Vital River Experimental Animals Technology Ltd. (Beijing,
China). They were assigned randomly to two parts of the
research: experiment 1 (n¼12) and experiment 2 (n¼12).
Animals were housed individually in a 12-h light–dark cycle
(lights on at 7 : 00 h) with ad-libitum food and water and
were allowed 1 week to adapt to the laboratory environment
before surgery. All efforts were made to minimize animal
suffering and to use only the number of animals necessary
to produce reliable scientific data. The anesthetic and
experimental protocol met all requirements regarding the
care and use of small animal subjects in accordance with
guidelines of the Beijing Laboratory Animal Center, guide-
lines of the Canadian Council of Animal Care, and the
Policies on the Use of Animals and Humans in Neuro-
science Research revised and approved by the Society for
Neuroscience (1995).



Technologies, Alachua, Florida, USA), presented at a rate
of 10/s, and delivered through a calibrated earphone (ED1).
One end of the 12-cm TDT sound-delivery soft tube
was connected to the ED1 earphone, and the other end
was inserted into the ear canal on the side ipsilateral to
the recording electrode. TDT software (SigCal, SigGen and
BioSig, Tucker-Davis Technology) was used to calibrate the
earphone, generate acoustic stimuli, monitor neural res-
ponse properties online, and store data for offline analysis.

Drug administration and electrophysiological recording
Animals were anesthetized with 10% chloral hydrate
(400 mg/kg, intraperitoneally) for the initial surgical proce-
dure and a state of areflexia was maintained throughout
the experiment by supplemental injections (0.1 ml per hour,
intraperitoneally). The animals were fixed in a Kopf stereo-
tactic head holder. A midline incision was made in the scalp,
the skin and muscles retracted laterally, and small cranio-
tomies made on the dorsal surface of the skull. Steel
electrodes (10–30 kO), insulated except at the 0.25-mm
diameter tip, and cannula guides were lowered to target
nuclei and the assembly fastened to the skull with dental
acrylic.

The following two brain structures were approached
vertically based on coordinates referring to bregma:
(i) central nucleus of the inferior colliculus (electrode
ipsilateral to ear stimulated, cannula contralateral to ear
stimulated): anteroposterior¼�8.80 mm, mediolateral¼
71.50 mm, dorsoventral¼�4.50 mm and (ii) dorsal nucleus
of the lateral lemniscus (cannula contralateral to ear
stimulated): anteroposterior¼�8.72 mm, mediolateral¼
73.00 mm, dorsoventral¼�6.80 mm [16].

Drug administration was via the guide cannula connected
to a 5-ml microsyringe through polyethylene tubing (inner
diameter: 0.38 mm, outer diameter: 1.09 mm; Clay Adams
Division, Becton-Dickinson and Co., Parsippany, New
Jersey, USA). A total of 1�2ml KYNA (1 mM) or Locke’s
solution was injected slowly over a period of approximately
1 min.

FFR recordings were carried out in a sound-attenuating
chamber 30 min after surgery during the light phase
(8 : 00�18 : 00 h). Brain potentials were digitized (20 kHz),
amplified (1000� ), filtered (0.1�5 kHz bandpass), and
averaged (N¼500 stimulus repetitions).

Experiment 1: effects of blocking the contralateral
inferior colliculus





nucleus a major source of inhibitory projection to contra-
lateral as well as ipsilateral inferior colliculus [15].

In experiment 2, microinjection of KYNA into contra-
lateral dorsal nucleus blocked the inhibitory effect of neuro-
transmission to ipsilateral inferior colliculus. Consequently,
FFR amplitudes in the ipsilateral central nucleus increased
significantly. In contrast, microinjection of Locke’s solution
into contralateral dorsal nucleus had no discernible effect.
These results confirm that inhibitory projections from the
contralateral dorsal nucleus of the lateral lemniscus normally
act to suppress the FFRs in ipsilateral inferior colliculus.

Conclusion
The results of this study show that the upper limit of
stimulus frequency for inducing FFRs in the inferior
colliculus is up to 4 kHz, which is apparently higher than
that reported by previous studies. The FFRs are modulated
by excitatory projections from the contralateral inferior
colliculus and inhibitory projections from the contralateral
dorsal nucleus of the lateral lemniscus. These results may
increase our understanding of the production of FFRs along
the ipsilateral auditory pathway. In future, potential contri-
butions of other auditory brainstem nuclei to the formation
of FFRs, such as the ipsilateral medial superior olivary
complex [25] and the ipsilateral lateral superior olivary
complex [14], need further investigation.
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