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a b s t r a c t

Adaptation to a visual pattern can alter the sensitivities of neuronal populations encoding the pattern.
However, the functional roles of adaptation, especially in high-level vision, are still equivocal. In the pres-
ent study, we performed three experiments to investigate if face gender adaptation could affect gender
discrimination. Experiments 1 and 2 revealed that adapting to a male/female face could selectively
enhance discrimination for male/female faces. Experiment 3 showed that the discrimination enhance-
ment induced by face adaptation could transfer across a substantial change in three-dimensional face
viewpoint. These results provide further evidence suggesting that, similar to low-level vision, adaptation
in high-level vision could calibrate the visual system to current inputs of complex shapes (i.e. face) and
improve discrimination at the adapted characteristic.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Visual adaptation is the process by which the visual system
alters its operation properties in response to changes in the envi-
ronment (Clifford et al., 2007). For example, adapting (seconds of
exposure) to a visual pattern can modify the tuning of neurons
encoding that pattern. One perceptual consequence of visual adap-
tation is that it usually biases the perception of a visual pattern
presented subsequently, which is called visual aftereffect. For
example, after inspection of a clockwise tilted line for approxi-
mately 1 min, a vertical line appears to be tilted in the opposite
direction (tilt aftereffect, Gibson & Radner, 1937). Visual afteref-
fects could be utilized to infer selective neural sensitivities to var-
ious stimulus dimensions, from low-level stimulus features (Anstis
& Moulden, 1970; Blakemore & Campbell, 1969; Kohler & Wallach,
1944) to mid-level surface and shape properties (Regan & Hamstra,
1992; Suzuki & Grabowecky, 2002; van Lier, Vergeer, & Anstis,
2009), to high-level object and face properties (Fang & He, 2005;
Leopold, O’Toole, Vetter, & Blanz, 2001; Rhodes, Jeffery, Watson,
Clifford, & Nakayama, 2003; Watson & Clifford, 2003; Webster,
Kaping, Mizokami, & Duhamel, 2004; Webster & Maclin, 1999;
Zhao & Chubb, 2001). Therefore, visual adaptation has often been
dubbed the psychophysicist’s microelectrode.

Another perceptual consequence of visual adaptation is visual
sensitivity change. It has been proposed that a key function of
visual adaptation is to optimize the use of the limited dynamic
range of neural responses for coding visual stimuli by calibrating

coding mechanisms to the visual environment (Barlow, 1990;
Clifford, Wenderoth, & Spehar, 2000; Laughlin, 1989; Rhodes,
Maloney, Turner, & Ewing, 2007). One possible consequence of
the optimization is that the visual system could maintain good dis-
crimination in that environment. Empirical evidence supporting
this idea is mainly from low-level feature adaptations. For exam-
ple, orientation discrimination around vertical improved after
adaptation to a vertical grating (Clifford, Wyatt, Arnold, Smith, &
Wenderoth, 2001; Regan & Beverlay, 1985). It has also been shown
that adaptation could improve discrimination on contrast (Abboni-
zio, Langley, & Clifford, 2002; Greenlee & Heitger, 1988), motion
direction (Phinney, Bowd, & Patterson, 1997) and speed (Bex,
Bedingham, & Hammett, 1999; Clifford & Wenderoth, 1999;
Krekelberg, van Wezel, & Albright, 2006).

Recently, there has been a growing interest in whether face
adaptation could improve face discrimination. Although several
experiments have been conducted to address this issue, evidence
is equivocal and it is still difficult to draw a definite conclusion.
Rhodes and colleagues (2007) failed to find enhanced sensitivity
to identity differences around the average face after adaptation
(but see Wilson, Loffler, & Wilkinson, 2002). Other adaptation stud-
ies on gender and ethnicity coding (Ng, Boynton, & Fine, 2008) and
expression coding (Pallett & Macleod, 2006) did not observe a re-
duced discrimination threshold after adaptation either. However,
two very recent studies showed that face adaptation could affect
face discrimination. A study by Chen, Yang, Wang, and Fang
(2010) examined the effects of face view adaptation on face view
discrimination. They measured face view discrimination thresh-
olds at a face front view before adaptation and after adapting to
the face front view and face side views. They found that, adapting
to the front view improved face view discrimination, whereas
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adapting to the 30� side view impaired discrimination. Similarly,
Rhodes, Watson, Jeffery, and Clifford (2010) discovered that
5 min of adaptation to an average Asian or Caucasian face reduced
identification thresholds for faces from the adapted relative to the
unadapted race.

In this study, we performed three experiments to test whether
visual adaptation can improve gender discrimination. In the first
and the second experiments, subjects adapted to male, female and
gender-neutral faces, and then gender discrimination thresholds
were measured for female faces (Experiment 1) and male faces
(Experiment 2). If the re-calibration theory of adaptation (Barlow,
1990) can be applied to high-level vision, face adaptation should en-
hance discrimination around the adapted state. Specifically, adapt-
ing to a male/female face should reduce discrimination thresholds
for male/female faces. In the third experiment, we tested whether
the discrimination enhancement induced by face adaptation could
be generalized to a different face view. Subjects adapted to the front
view and the 30� side view of female faces, and then gender discrim-
ination thresholds were measured for the front view of female faces.

2. Methods

2.1. Participants

A total of 36 undergraduates (15 male and 21 female) from
Peking University participated in the study, 12 for each of the three
experiments. They were right-handed with reported normal or cor-
rected-to-normal vision and had no known neurological or visual
disorders. Their ages ranged from 19 to 23. They gave written, in-
formed consent in accordance with the procedures and protocols
approved by the human subjects review committee of Peking
University.

2.2. Apparatus and stimuli

Stimuli were presented on an IIYAMA HM204DT 22 in. monitor,
with a spatial resolution of 1024 � 768 and a refresh rate of
100 Hz. Subjects viewed the stimuli from a distance of 57 cm. Their
head position was stabilized using a chin rest and a headrest.

Three pairs of faces were generated by FaceGen Modeller 3.1
(http://www.facegen.com/). Two pairs were Asian faces and one
pair Caucasian faces. In each pair, one face was fully female and
the other fully male. Fully female/male faces were determined by



Author's personal copy

In Experiment 2, we attempted to measure gender discrimina-
tion thresholds at the gender strength of 20 without adaptation
and after adaptation to faces with gender strengths of 20, 50 and
80. The experimental procedure was identical to that in Experi-
ment 1. In Experiments 1 and 2, all adapting and test faces were
face front views.

In Experiment 3, we measured gender discrimination thresh-
olds at the gender strength of 80 without adaptation and after
adaptation to a front face view and a 30� face side view (Fig. 2B).
The 30� side view were generated by projecting a 3D face model
with a 30� in-depth rotation angle onto the monitor plane. These
two adapting faces had the same identity and had a gender
strength of 80. Test faces were around the front face view. Similar
to the experimental procedure in Experiments 1 and 2, each sub-
ject participated in four daily sessions and completed one staircase
for each adaptation condition (front view and 30� side view) and
the no adaptation condition in a daily session. The temporal order
of the three staircases in a session was randomized. Subjects were
asked to take a rest of at least 5 min between staircases to avoid
carry-over effects. Twelve subjects were randomly assigned to
three groups, with four subjects in one group. Each group of sub-
jects were tested with one morph continuum.

3. Results

Experiment 1 measured the effects of adaptation to male,
female and gender-neutral faces on gender discrimination for
female faces. Gender discrimination thresholds in these three
adaptation conditions are shown in Fig. 3, along with the threshold
measured without adaptation. A repeated-measures analysis of
variance (ANOVA) of discrimination threshold was performed with
adaptation condition as a within-subject factor. The main effect of
adaptation condition was significant (F(3, 36) = 6.965, p = 0.001).
We run planned t-tests to compare discrimination thresholds
between face adaptation conditions and no adaptation condition.
Relative to the gender discrimination thresholds without any adap-
tation, subjects’ discrimination thresholds for female faces signifi-
cantly reduced after adapting to a female face (t(11) = 6.426,
p < 0.001), but not after adapting to a male face (t(11) = 0.6, p =
0.561) or a gender-neutral face (t(11) = 1.65, p = 0.127). Although
the reduction was not large (15.4%), it was quite consistent across
subjects. We further run planned t-tests to compare discrimination
thresholds between different adaptation conditions. The

thresholds after female face adaptation were (marginally) signifi-
cantly lower than those after male face adaptation (t(11) = 4.144,
p = 0.002) and gender-neutral face adaptation (t(11) = 2.13,
p = 0.057).

Experiment 2 measured the effects of adaptation to male, fe-
male and gender-neutral faces on gender discrimination for male
faces. Fig. 4 shows gender discrimination thresholds after adapta-
tion and without adaptation. Similar to Experiment 1, a re-
peated-measures ANOVA of discrimination threshold showed a
significant main effect of adaptation condition (F(3, 36) = 6.67,
p = 0.001). Planned t-tests showed that, relative to the gender dis-
crimination thresholds without any adaptation, subjects’ discrimi-
nation thresholds for male faces significantly reduced after
adapting to a male face (t(11) = 6.559, p < 0.001), but not after
adapting to a female face (t(11) = 1.331, p = 0.21) or a gender-neu-
tral face (t(11) = 1.472, p = 0.169). Note that the reduction (11.2%)
was also quite consistent across subjects. We further run planned
t-tests to compare discrimination thresholds between different
adaptation conditions. The thresholds after male face adaptation
were significantly lower than those after female face adaptation

(A) Front view adaptation
Pre-adaptation
       20s

 Topping-up
adaptation 5s

Blank
   1s

First face
    0.2s

Blank 
 0.4s

Second face
      0.2s

Response

(B) 30° side view adaptation
Pre-adaptation
       20s

 Topping-up
adaptation 5s

Blank
   1s

First face
    0.2s

Blank 
 0.4s

Second face
      0.2s

Response

Fig. 2. Schematic description of experimental procedures. Following pre-adaptation and topping-up adaptation to a face, two test faces with slightly different gender
strengths were presented sequentially. Subjects were asked to judge whether the second test face was more male or more female, relative to the first test face. They adapted
to a front view in Experiments 1 and 2 (A) and a 30� side view in Experiment 3 (B).
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(t(11) = 3.951, p = 0.002). Although the thresholds after gender-
neutral face adaptation were higher than those after male face
adaptation, their difference was not significant (t(11) = 1.245,
p = 0.239).

We also analyzed the data in Experiments 1 and 2 all together
by reverse-coding the data in Experiment 2. As expected, a re-
peated-measures ANOVA of discrimination threshold showed a
highly significant main effect of adaptation condition (F(3, 72) =
12.622, p < 0.001).

Results in Experiments 1 and 2 demonstrated a beneficial role of
adaptation in gender discrimination performance only at the
adapted gender strength. Experiment 3 examined if the adaptation
benefit could generalize to a different face view. Fig. 5 shows gen-
der discrimination thresholds for female faces without adaptation
and after adaptation to the front view and the 30� side view of a
female face. A repeated-measures ANOVA of discrimination
threshold showed a significant main effect of adaptation condition
(F(2, 24) = 29.317, p < 0.001). Planned t-tests showed that, relative

to the gender discrimination thresholds without any adaptation,
subjects’ discrimination thresholds significantly reduced after
adapting to both the front view (t(11) = 6.627, p < 0.001) and the
30� side view (t(11) = 5.334, p < 0.001). But there was no significant
difference between the thresholds in these two adaptation condi-
tions (t(11) = 1.483, p = 0.166). Threshold reductions after adapting
to the front view and the 30� side view were 14.7% and 16.8%
respectively.

4. Discussion

Three experiments were carried out to examine if face adapta-
tion could improve gender discrimination. Experiments 1 and 2 re-
vealed that adapting to a male/female face could selectively
enhance discrimination for male/female faces. Experiment 3
showed that the discrimination enhancement induced by adapta-
tion could be generalized to a different face view. These results
demonstrated that, similar to low-level vision, adaptation in
high-level vision could calibrate the visual system to current
inputs of complex shapes (i.e. face) and improve discrimination
at the adapted characteristic. It should be emphasized here that,
since adapting and test faces were always from the same morph
continuum, our adaptation effect is an identity-based gender
adaptation rather than a general gender adaptation that could be
generalized across multiple individuals of the same gender.

Face gender aftereffect was first described by Webster and
colleagues (2004), which showed that, after adapting to female/
male faces for a few minutes, observes perceived a gender-neutral
face as male/female. This aftereffect suggests that a functional role
of face adaptation is to adjust the boundary of our perceptual cate-
gories. Ng and colleagues (2008) investigated whether this adapta-
tion has perceptual consequences beyond the boundary shift by
measuring the effects of adaptation on RSVP, spatial search, and dis-
crimination tasks. They did not find any discernable effect on perfor-
mance for any of these tasks. In the current study, we measured
adaptation effects only with a discrimination task. The reason why
they failed to find adaptation effects is hard to ascertain since their
study differed from ours in many respects. Here, we discuss two
potentially important factors. One factor is attention. In their study,
subjects passively viewed adapting faces. But in our study, subjects
maintained their attention on adapting faces by doing a detection
task (see Section 2). It is likely that subjects in our study allocated
more attentional resource to adapting faces than their study. A func-
tional magnetic resonance imaging (fMRI) study (Wojciulik, Kanw-
isher, & Driver, 1998) has shown that attending to faces could
increase blood oxygen level-dependent (BOLD) signals in face-selec-
tive areas in human visual cortex by three times. Also, attention has a
profound effect on visual adaptation, as demonstrated by many psy-
chophysical and brain imaging studies (Fang, Boyaci, & Kersten,
2009; Murray & Wojciulik, 2004; Yeh, Chen, De Valois, & De Valois,
1996). The other factor is the difference in performance measure.
We used an adaptive staircase to measure discrimination thresholds
with and without adaptation. In Ng et al.’s study, the method of con-
stant stimuli was used. Only a limited number of pairs of faces were
presented to subjects for a 2-AFC discrimination task. However, the
task might be too difficult to reveal adaptation effects since the gen-
der strength differences in the face pairs were small and the average
percent correct was only 58% (Experiment 4C).

It should be admitted that the performance improvement after
face gender adaptation is small, which is comparable to the
improvements after orientation adaptation (Clifford et al., 2001)
and face view adaptation (Chen et al., 2010). Even such a small
improvement can be considered as a functional benefit because
the amount of improvement is usually proportional to the length
of visual experience. For example, tens of hours of visual experi-
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Fig. 4. Gender discrimination thresholds at the gender strength of 20 without
adaptation and after adaptation to faces with gender strengths of 20, 50 and 80.
Asterisks indicate a statistically significant difference between adaptation condi-
tions (���p < 0.001). Error bars denote 1 SEM calculated across subjects.
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ence (e.g. perceptual learning) can dramatically improve our dis-
crimination ability (Bi, Chen, Weng, He, & Fang, in press; Fahle &
Poggio, 2002). However, the visual experience in the current study
was only 25 s.

Experiment 3 demonstrated that the gender discrimination
improvement induced by adaption could be generalized to a differ-
ent face view, which resonates with the finding that face identity
aftereffect could transfer across a substantial change in three-
dimensional viewpoint (Jiang, Blanz, & O’Toole, 2006). In monkey’s
high-level visual areas, view-depend and view-independent face
neurons mixed together (Booth & Rolls, 1998; Perrett, Hietanen,
Oram, & Benson, 1992). Psychophysical adaptation studies provide
evidence for both view-dependent and view-independent codings
of face identity in the human visual system (Jeffery, Rhodes, &
Busey, 2006; Jiang, Blanz, & O’Toole, 2006; Welling et al., 2009).
It has been suggested that view-independent representation (rec-
ognition) is achieved by using a hierarchy of neural mechanisms
with view-dependent responses (Riesenhuber & Poggio, 2002).
Our finding suggests that face gender adaptation took place (at
least partially) at the level of view-independent face representa-
tion. Meanwhile, it also provides further evidence to rule out
low-level adaptation as an explanation of the performance
improvement.

In this study, we measured discrimination threshold reductions
not only when the adapting face was identical to the test face, but
also when they were different in gender strength. Results in Exper-
iments 1 and 2 show the same pattern. That is, significant reduc-
tions were observed only when the adapting and the test faces
were identical. When the adapting and the test faces became more
and more dissimilar, discrimination threshold reductions gradually
diminished. This pattern is different from the effects of orientation
adaptation (Clifford et al., 2001) and face view adaptation
(Chen et al., 2010). For these two kinds of adaptations, discrimina-
tion thresholds after adaptation also reduced significantly when
adapting and test stimuli were identical. However, when adapting
and test stimuli differed moderately, discrimination thresholds
increased and subjects’ performance was impaired. One possible
reason for this difference is that, in the visual cortex, face gender
is coded in a different way from face view and orientation. Both
face view selective neurons and orientation selective neurons have
a bell-shaped tuning function responsive to a specific face view or
orientation (Perrett et al., 1992), whereas identity (e.g. gender) has
been suggested to be coded in a norm-based way in monkey
inferotemporal (IT) cortex (Leopold, Bondar, & Giese, 2006).

Although our data provide a clear demonstration that face
adaptation can improve gender discrimination, the precise mecha-
nisms underlying the improvement remain uncertain. A possible
mechanism is that adaptation to a female/male face could tempo-
rarily bias the generic norm towards the adapted gender, which
might improve discrimination (Rhodes et al., 2010). Wilson and
colleagues (2002) found that the discrimination threshold for face
sets around the average (norm) face was lower than that for face
sets far from the average face (but see also Rhodes et al., 2007),
which is consistent with the neurophysiological finding that IT
neurons were most often tuned around the average face (Leopold
et al., 2006). In the future, complementary to psychophysical stud-
ies, more single-unit and brain imaging studies are needed to carry
out to obtain a full understanding of the mechanisms of face adap-
tation. Indeed, we know little about how adaptation influences
neuronal tuning functions to faces (and objects) in the high-level
visual cortex.
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