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Summary

Although previous studies have shown that Braille reading
and other tactile discrimination tasks activate the visual

cortex of blind and sighted people [1–5], it is not known
whether this kind of crossmodal reorganization is influenced

by retinotopic organization. We have addressed this ques-
tion by studying ‘‘S,’’ a visually impaired adult with the rare

ability to read print visually and Braille by touch. S had
normal visual development until 6 years of age, and there-

after severe acuity reduction due to corneal opacification,

but no evidence of visual-field loss. Functional magnetic
resonance imaging revealed that, in S’s early visual areas,

tactile information processing activated what would be the
foveal representation for normally sighted individuals, and

visual information processing activated what would be the
peripheral representation. Control experiments showed

that this activation pattern was not due to visual imagery.
S’s high-level visual areas, which correspond to shape-

and object-selective areas in normally sighted individuals,
were activated by both visual and tactile stimuli. The retino-

topically specific reorganization in early visual areas
suggests an efficient redistribution of neural resources in

the visual cortex.

Results

Perceptual experience changes the physiological and func-
tional architecture of the developing brain [6]. Brain imaging
studies have shown that the visual cortex in blind people is
active in Braille reading and other tactile tasks, suggesting
crossmodal plasticity [1–5]. Disruption of the visual cortex
via transcranial magnetic stimulation (TMS) worsens blind
people’s performance in both Braille reading and tactile
discrimination tasks [3, 7]. However, the precise role of the
visual cortex in tactile processing remains controversial. At
least two explanations have been suggested for the
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involvement of the visual cortex in tactile processing. One
explanation is that spatial [8–10] or visual [2, 11] imagery plays
an important role in the involvement of the visual cortex in
tactile tasks in early- and later-blind people. On the other
hand, since tactile tasks activate the visual cortex not only in
blind people but also in sighted people, the visual cortex has
been hypothesized to be a multimodal spatial processor
[12, 13]. Short-term visual deprivation by blindfolding sighted
people facilitates Braille learning [14] and results in the recruit-
ment of the visual cortex for tactile processing [12, 15, 16].
A potential explanation for this fast crossmodal plasticity is
that latent connections between the primary somatosensory
cortex and the visual cortex are unmasked when the domi-
nating retinogeniculate visual inputs are blocked.

However, these two explanations do not take into account
the functional and spatial organization of the visual cortex.
Early visual cortices are known to have retinotopic organiza-
tion [17, 18]. Neurons representing different retinal eccentrici-
ties in the early visual cortices have different spatial frequency
tuning [19, 20]. Foveal neurons have a smaller average recep-
tive field size [21, 22] and are more tuned to high spatial
frequencies. They are capable of processing visual information
at very high spatial frequencies. Cortical neurons representing
peripheral vision have larger receptive fields [21, 22] and are
more sensitive to the lower range of spatial frequencies.

Visual impairment due to diseases in the early visual path-
ways often causes acuity reduction and results in selective
deprivation of higher spatial frequency inputs to the visual
cortex. It is possible that the more severe input deprivation
in the foveal cortical regions as compared to the peripheral
cortical regions might influence the recruitment pattern of
visual cortex for tactile processing. If so, visually impaired
people might exhibit a retinotopically specific reorganization
of visual cortex in which some regions are retained for visual
processing while other regions are reassigned to touch or
other sensory modalities.

We report here our findings on ‘‘S,’’ a visually impaired
person who has the rare ability to read both print visually
and Braille by touch. Examination of S’s visual cortex via func-
tional magnetic resonance imaging (fMRI) provides a unique
opportunity for testing the proposed explanations for tactile
processing in visual cortex. If S’s impaired vision and skilled
Braille reading result in multimodal sharing of the visual cortex,
it is important to determine whether the same neurons partic-
ipate in both vision and touch or whether S’s visual cortex
exhibits a retinotopically specific segregation of function for
vision and touch. Findings on this special case will provide
important information about the extent of specificity in cross-
modal cortical plasticity.

Case Description
S had normal visual development and acuity until 6 years of
age, presumably resulting in normal retinotopic organization
in his early visual areas [23, 24]. He then acquired severe bilat-
eral corneal opacification, secondary to Stevens-Johnson
syndrome. The vision in his better (right) eye has remained
fairly stable since. Clinical examinations showed no evidence
of nystagmus in S, and he is capable of stable fixation
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also been found to be activated by tactile object perception
tasks in normally sighted people [28]. It appears that S’s Braille
processing finds its way not only into the early visual areas but
also into the high-level areas that are normally involved in
visual shape perception.

We next asked whether the activation of S’s foveal conflu-
ence was dependent on the linguistic content of the Braille
task. To address this, we measured BOLD response in S while
he performed a non-Braille tactile task and its visual counter-
part. S was asked to make a symmetry/asymmetry judgment
for simple geometrical shapes presented either visually or
tactually. This tactile task induced an fMRI activation map
similar to the map of the Braille task (see Figure 3), suggesting
that S’s foveal activation to tactile inputs is due to tactile
perceptual processing rather than a top-down influence from
linguistic processing specific to Braille reading.

In order to evaluate the possible role of visual imagery in this
double-dissociation phenomenon in S’s early visual cortex, we
measured S’s BOLD response to a visual imagery task. S heard
a spoken word and imagined the word in a prespecified color
(red/green) or case (upper/lower). (We equated auditory stim-
ulation between stimulus blocks and blank blocks. See
Supplemental Experimental Procedures.) We found sporadic
activations in S’s early visual cortex in this task, but they
were outside of S’s foveal confluence (left panel of Figure 4).
In addition, the imagery task produced substantial activations
in S’s high-level visual cortex, including the dorsal and lateral
occipital areas, ventral occipitotemporal areas, and intraparie-
tal sulcus, which significantly overlapped with the areas acti-
vated by the Braille task (right panel of Figure 4). It should be
noted that our visual imagery task might not be the best one
to activate V1, but it was designed to best match the Braille
task.

Control Experiments with Normally Sighted Participants

All normally sighted control participants wore diffuser goggles
to simulate S’s retinal image quality during fMRI testing. The
diffuser goggles reduced their Snellen acuity to 20/1000,
approximately matching S’s visual acuity. Two young controls
(26 and 27 years old) participated in the visual and Braille
lexical decision scans. Since the young controls could not
read Braille, they were asked to feel the Braille symbols and
to count the dots, instead of performing the Braille lexical deci-
sion task. Two age- and gender-matched controls (males aged
56 and 59 years) participated in the same visual and tactile
shape categorization scans as S. In all control participants,
we found no evidence for tactile activation of the foveal conflu-
ence (Figure 3; Figure S5).

Discussion

Our findings in S show that experience-dependent cortical
reorganization can be remarkably specific. S’s retinogenicu-
late pathway ceased to deliver fine-grained visual information
to his visual cortex after 6 years of age. Eventually, the neurons
normally adept at resolving visual details were recruited for
fine discrimination of tactile details. The rest of the visual
neurons continued to process coarse visual information.
Thus, we interpret our findings as evidence for a visual and
tactile experience-specific cortical reorganization that is
guided by both the availability of input information and the
inherent functional specialization of the neurons involved.
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S’s early exposure to the high tactile spatial resolution de-
manded by Braille reading and other tactile tasks might have
been the trigger for crossmodal ‘‘takeover’’ of the foveal
representation. His visual cortex has responded to the devel-
opment of skills in tactile pattern analysis, especially Braille
reading, and the concomitant experience of partial visual
deprivation by reorganizing crossmodally at the foveal conflu-
ence.

Previous studies [4, 29] have found that Braille reading in
blind people preferentially recruited their peripheral represen-
tations, different from the foveal activation in S. This might be
due to S’s special visual and tactile experience, and perhaps to
different study designs as well. Accompanying the foveal acti-
vation by tactile stimuli and the peripheral activation by visual
stimuli in S, there were corresponding peripheral and foveal
suppressions of BOLD signal. Negative BOLD signals are
pervasive in functional brain imaging studies, but their origin
remains controversial [30, 31]. Whether the negative BOLD
signals in S are an epiphenomenon or have a functional role
remains unresolved.

Although visual imagery involves V1 [32] and is retinotopi-
cally specific [33], we did not find evidence supporting foveal
activation by visual imagery in S. Nonvisual mental imagery
cannot explain the double dissociation in S’s visual cortex
either. Nor is this double dissociation explained by the hypoth-
esis that the visual cortex is a multimodal spatial processor,
which predicts that the visual and tactile modalities share the
neural resources and activate overlapping regions of the visual
cortex. Unlike cortical reorganization studies of blind people
[1–5] or visual deprivation studies of blindfolded sighted
people [12, 15], our results indicate that the unmasking of
connections between the somatosensory cortex and visual
cortex can be very specific and functionally adaptive. The
recruitment of the visual cortex for touch seems optimal:
only those visual neurons that are not critical for S’s remaining
low-resolution vision are recruited for tactile processing.

We considered two possible artifactual explanations based
on stimulus size for the activation and suppression pattern in
S’s visual cortex. First, because most of our visual stimuli
covered a large portion of the field, it might be argued that
stimulation of both foveal and peripheral regions of the visual
field could lead to competitive interaction between these
regions in the cortex and result in foveal suppression by
peripheral cortical responses. A related argument is that S
attended only to the global outline of large stimuli, accounting
for peripheral activation and foveal suppression. But S’s data
from the retinotopic mapping experiment counter these expla-
nations. In this experiment, a small annulus and a large annulus
activated the same peripheral area in S’s cortex, and attending
to a small stimulus did not selectively activate S’s foveal
projection. Also, S’s ability to read printed text implies that
he pays attention to internal features as well as bounding
contours of patterns. Second, it might be argued that Braille
symbols are physically small, and stimulation with larger
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embossed patterns might result in tactile activation of more
peripheral portions of S’s visual cortex. We believe that this
is not the case. In our tactile experiments, we used Braille
letters and embossed geometrical shapes, which we believe
are typical patterns for tactile processing on the fingertip.
Recognizing Braille letters requires the ability to process
very fine tactile information. On the other hand, since the
geometrical shape stimuli used were at least six times larger
in area than Braille letters, much coarser tactile information
processing is adequate for making symmetry/asymmetry
judgments for these geometrical shapes. Both large (geomet-
rical shapes) and small (Braille) stimuli evoked similar foveal
activation and peripheral suppression in the cortex. This
finding suggests that the tactile activation of foveal cortex in
S was not limited to fine tactile information processing.

Our findings in S may have implications for sight-restoration
procedures. What would be the prognosis for S’s visual func-
tion if a surgical procedure could provide him with good optical
image quality? The reorganization of S’s visual cortex makes it
likely that cortical resources would not be available for high-
resolution visual analysis even if the retinogeniculate pathway
remained capable of encoding high-resolution features. The
disappointing visual outcomes after ‘‘sight-restoration’’ surgery
reported in the case studies of long-term severe visual impair-
ment by Gregory and Wallace [34], Sacks [35], and Fine et al.
[36] are consistent with this possibility (but see also [37]). On
the other hand, it remains possible that sight restoration late
in life might be accompanied by vision reclaiming some of the
cortical areas that it has lost. Data from the rare case studies
available to date, although suggestive, are inadequate for
a definitive conclusion about the capabilities of the visual
system for reorganization following sight restoration in adult-
hood.

In summary, our study of S has demonstrated a multimodal
‘‘visual’’ cortex with dissociable functions. In the midst of an
increasing amount of evidence for a plastic brain, our findings
show a remarkably specific cortical adaptation to sensory
experience. Despite the retinogeniculate inputs to the early
visual areas, it appears that tactile afferent inputs are able to
make use of unused portions of visual cortex in a functionally
appropriate fashion. We suggest that the division of early
visual areas in S reflects an optimal distribution of cortical
resources. As Braille reading is a tactile task that requires
high spatial resolution, the remapping of the foveal confluence
for Braille reading is beneficial. At the same time, the preserved
peripheral cortical representation in the early visual areas is
adequate for processing the severely blurred retinal inputs.

Supplemental Data

The Supplemental Data include Supplemental Results, Supplemental

Experimental Procedures, and five figures and can be found with this article

online at http://www.current-biology.com/supplemental/S0960-9822(09)

00885-9.
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