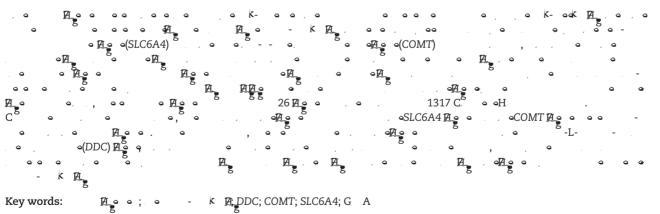
Social Cognitive and Affective Neuroscience, 2017, 1534 1544

doi: 10.1093/scan/nsx062 A ∘A ∘ D ∘ 19 A 2017 .⊈g ∘


Identifying new susceptibility genes on dopaminergic and serotonergic pathways for the framing effect in decision-making

,^{3,4} A ,_{1,7,9} 8 ₽,^{7,8} •G ,^{1,2} J AL § G 🕂 g F 1,2,9,10,11 A ^{,7,8} L <u>A</u> Η в СА , В • А<u>1</u>00871, С. ¹C • • В CA ٩ , ³C. Co o • E • ٩ Ø, A A518060, C ,⁵K ∘ L В F , **o** , • , G ٩ • • C E. ۹B В ٩ Ħ A (٩ **,** · ٩ • <u>A</u> 710069, C •• . I • E , G A, A, , C, • Æ-5 Looo ⁹ K -IDG/ G 510631, C A Сo L o ¹⁶K • L ¹¹B • (), Ι В E <u>₩K</u> • H∘, ≰ ∄_ , B • 🛛 🗛 100871, C L ВĢ 9

од Ј<u>ИЈ</u>, оо , К. Со оо, со оо , , , , <u>И</u>, С<u>И</u>, оо, «<u>И</u>, о, 5. о., <u>Во И100871</u>, С. .Е- : 104@ К.о. .

Abstract

OXFORD

Received: 1 A 🕰 2016; Revised: 18 J 2017; Accepted: 17 A 2017

© , •A ,	(2017). 🔹 _	• •	
· -	• A • • •		, ∘C ∘ ∘C A, −C ∘ L ∘ ∘(, :// ∘ ∘ . ⊠/
• •/ <u> </u>	- /4.0/), / • -	• •	9. , . e . e , . e . e <u>K</u> e e .

Introduction

A_g D K A ۵ (. 9 к- оф Д 9 • ۰ (.e. 9, k Æ_oo'(ok K.o , 1981; K • k , 1984; K • @ et al., 1999). • (K • • ۵ k 1979: •, 1997), ~ , **e**, e ۰<u>۸</u> Ħ. ۵ Æ (et al., 1982; D K , 2004).

۵ ۵ ۵ • Æ. • . ۵ 17A ۵ ۵ ۵ ٩ k 000 ۰A ۵ ۵ ۵ et al., 2008). • (H et al., 2004; D • • • • • • • • , **e** 6) , • (•# Ħ ۵ 8 • k 9 ۵ ۰A 0 et al., 2013; Ğ et al., et al., 2006; ◦ et al., 2009; (D • ۰ o, 2016). <u>م</u> • • -**Æ_∘** ∘ (D k D۵ , 2008), Ø. ۵ ۵ • • • • • A C , 2011).

Ø. κ Ø. ø ο κ, • -(K • 1979; •, 1997; D • et al., 2006; • et al., 2009; G et al., 2016), • • (∰_e, 2012), • , 2011; C • et al., 2012; C 174-A A A A ۰, а Д. Д. а д. Д. а д. а д. а 2009: 1 ĸ- ĸ ₽. •. A ۹ , ۹ •Я • •Я • • К Я (C et al., 2009; D • • et al., 2009; К • С. k , 2009; H •et al., 2010; F et al., 2011; H • et al., 2012; • • е о <u>А</u> et al., 2013; • et al., 2014), ۹ . • , • <u>A</u> • • . • - <u>R A </u> . . Ħ 3 • (C et al., 2009, = 36; et al., 2009, =30. • •• 5-H L , **o** Ģ , ∘<u>Æ</u>_ ∘ ٩ ₽ B • <u>A</u> • • (SLC6A4), Ø. I Æ •5-H L ٩. ٩ () • , • g A A COMT k (= 98).... COMT 158 Ħ Ø. Æ. ۹, ٩ (G et al., 2016). H ۰ ۰, 🕰 ۰ ĸ ۰-, 2009; Æ et al., 2010), (• K o o, o, o ۵ AHee ۵ A_ A. • -Ħ ٩Æ A. ۵ ۰Ħ Gaa Æ H. A_

(◦ ◦-L ◦ ◦, ◦, 2010;. ◦• et al., 2010; ₫ (◦ ◦ -L Ħ • et al., 2010; G et al., 2014). F • • • • ∘COMT ⊉ ∘ ٩ , **o** • • OM. • A A ٩ ٩ <u>ہ</u> ہ ٩ • • (. 8; Е ет аl., 2005; D et al., 2006; К -К е Д et al., 2004;
 Agt al., 2008;
 et al.,

 к, 2006).
 , Аде
 et al., 2007; et al., 2007; К, 2006). (МАОА Кара (Карана, 2009) Карана, 2007; 2010; ••, ••H• ۵ MAOB) oko **⊿**7ī ₽<u>₽</u> ٩ 0 et al., 2009) .

Goo <u>777 -</u> 88 , • • • Ø. A o ٩ 。 (。。-L 。 ○預, 2010; 預 G , 2011; F et al., 2013; et al., 2010; B • G , J • L , 2014). • A. B. A. B. (/), o, () oo 5-H L (H et al., 2002; C . G k, 2004; L k et al., 2005; 🖉 🖕 , , **o** 2010), 5-H L • •• 5-H L • **A** A ` et al., 2009). LE • • ٩(3 ۰. ۰ °. A o • , **o** 9 ٩ •<u>#</u>••• , • -L-. . . **o** , (DDC), ٩ A ۵ ∘(B ⊉_ 8 et al., 2010) <u>ہ (C</u> et al., 2003).

Æ_g С oko Ħ ۵ ۵ ۵ 8 Ħ ۵ ۵ م للم للم •<u>A</u>_____8 Ø. . Дааа , <u>Да</u>а , **o** Æ. I ۵ 17 `(C 42),_g ₽____ (C et al., 2011 , .) • , 2008; ۵ ₽́ A Н . (. Ægt al., Agt al., 2010) Ag 2007; (G A) • # • • ٩ • A ٩ 9 ĸμ • , 26 🗛 • Ϊ́Ζ -۵ •• ٩<u>A</u> 0 0 ٥Ħ Æ_ `<u>A</u> • . A ۵ ۵ ۰Ħ ٥Ħ /k (14/), 8 KEGG .H.o :// 7.000 ٩ • ٩ (•Æ. et al., 2011; • et al., 2014; B et al., 2016). G • • k ۵ ۵ ۵ . . ۵ G ۵ 2 A o () G Α ٥ ٩ KAO (LD) (Ħ 2008) A • • (et al., 2010). С

е, Ке еДее Дее ее е (С) е е (ее, 2004; Де А, 2008).

Downloaded from https://academic.oup.com/scan/article-abstract/12/9/1534/3740049/Identifying-new-susceptibility-genes-on by Peking University user on 08 October 2017

<u>م الم</u> ه • ۵) ٥ Ø (... 9. 2004; K ∘ et al., 2008; Æ.(٩ А 8 4 4 8 2008ි). C ۵ oK • Aet al., 2010; • • k Ħ (2 et al., 2014) Æ • • 99 Ģ Æ, , 2008; H ٩ Ø (A, et al., . A. 2011 ,).

Materials and methods

Participants

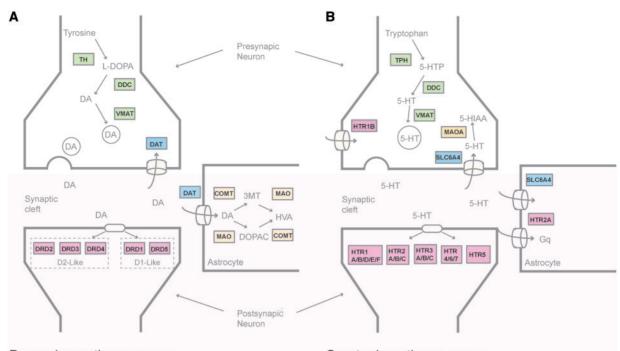
Ø. (G 2013) ٩ 9 A_g A. C. C. • • • ۵ ~ • • ~ • • C ۵ ۰H (80.1% A 18.66 ± 0.90 •) • • 15 . A 100 Æ, ۵ k A • <u>A A</u> • - ^A6; G Й ۵ 8 , **o** K (• behav-٩ • et al., 2016). I ioral test; D • et al., 2006; •1582 , 5 A Ø. ۵ ۵ ۵ ۵. • • ۵ ۵ 000 1317 А ٩ c ~ Æ, ۵ ۵ A ۵ Ħ ۵ 01 ۵ ۵ ~ ۵ 9. A 0 ۵ = 30.58, ۲A (. 9 **ء** <50, ۵ ۵ D = 5.35) Ħ 9 ۵ Ħ 9 Ægt al., 1999) (.♀ ♀< **A**_1971; Ao ۵ ٥ ۰ -= 33.3, D = 6.31) • (. • <50. ٩ A et al., 1999), ° AD • ₽, 1965; ۹(0 0 ٥ ۵ <u>ଜ</u>ୁ -٩ ۵ ۹⁶(51, 51, 53, 53, 53, 54, 54, 55 59. ۵ ۵ • • л., Де • • • • 00 <u>A</u>_• (51, 51) 56, ٩ • •) ٥ A ٩ . G Ħ • ٥ g Ag 12 A. • ۵ ۵ ۵ ۵ ۰D۰ Ηo k ٩ ۵ ۰E С ٩ C д ≰ Æ Ø. ٩ ٩ ۹. ٥

The behavioral test

k G et al. (2016), • ٩ • D۹ et al (2006) 00 0 0 ٩ • A.º º • et al., 2009; et al., 2013). A ٩ (٥ Ø. A. 0 0 0 • • ٩ 9 00 Æ, æ, • • ٩ 99

K д (. 9 0 k Ħ (. 2 • • ٩ •) (•Æ_K •• (. . . . 20 50') • • (....)(•14_L A 30 50'), • ¶. ₹ . F ۵ . F 0 •₩_K •• 80 100' vs Kaa (٩ 100 40%') ٩ ٥

Ħ Ħ 8 ξ ۵ Ø Е 48 16 (16 16 • • Ø. , 0 ٩ et al. (2006). Do A k Ø. 8 Ħ A • • (500:1) P ۰۰ G et al. (2016) ۵ ۵ ۵ . . . • 9 (<75%, ٩ $=90.5\%\pm6.5\%$) =57.9%±17.6%; 1317 ۵ • ۵ ٥ Æ_° • (4.44%±1.75%) • 0 , , . . A 1317 (14.51% \pm 0.34%), $t_{(1580)} = 9.16$, P < 0.001. k 🕰 F ۵ ę ۵ ۵ ۵ ۵ , Æ_ ۰ (۵ 00) ۵ ۵ ۵ 9 <u>a</u> a ۵ , D = 551κp (• = 1591) ۵ 8 \bullet = 1601 , D = 544) ۵ à (۵ (\circ = 1776 , D = 353 ۵ ; ۵ ۵

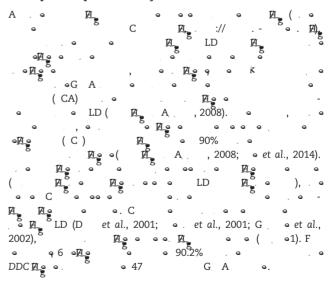

= 1872 , D = 376), $t_{(1580)} = 6.639$, P < 0.001 $t_{(1580)} = 9.375$, P < 0.001 $\circ \circ \circ \circ$, \square_{5} $\circ \circ$

Genotyping

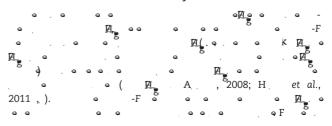
A 9 Δ Δ • ٩ ∘ <u>A</u> kG ∘ ∘610L DA Ħ • Α Ι 0 Ø. • <u>A</u>• Η Æ I Æ Æ, -8 1 C Ι 0 A. A

Gene selection and preprocessing

Ø. • • ۹K E • G o o G۹ ۰(KEGG; :// 0 ∘ /K ∰∰/). 0 <u>A</u>o 0 .Æş • • ۹(TH), () • • ٩ -L-٩ _ Ø. 9 9 () (DRD1–5), ٩ 9 • (DAT1, - 0 0 ٥ ٥ •



Dopamine pathway genes Serotonin pathway genes


۰Æ ۰<u>A</u> ۰<u>A</u> ۰Æ Fig. 1. D ₽<u>•</u>•(A) **∄**• • . D •Æ.e (<u>A</u> ...), K 0(٩ 4 (• ••• (K).C• <u>م</u> 9 , e •<u>A</u> ۰Æ • , •K 9 0 Goo ∘(KEGG; E Go :// Æ. • /K ∰∰); • et al., 2014. 00

SLC6A3), • • (COMT), •, -O-۰, • ◦ B (MAOB) • A (MAOA) ٩ (et al., 2011; • et al., 2014) Ag o ۰ () ۰ , **o** 5-TPH2),() ◦(TPH 1 A • • • 5-(HTR1A/B/D/E/F, HTR2A/B/C, • HTR3A/B/C/D/E, HTR4, HTR5A/B, HTR6-7, HTRA1-4), () • -9 - . . . et al., 2016) (F 🗛 • 1). HTR3D (SLC6A4) (•• В HTR3E A o Ģ ٩ • • et al., 2003; •• , • (B**Alo**⊲ Goo e Eo E :// Aga . /). DRD4, **,** · ÅTRA4 DRD5, HTR1A/B/D/F, HTR5B, HTRA2 • • • • • ۵ Ø. æ, G A Ģ ٩ ALIK(◦ et al., 2007; • et al., 2014): • • <u>A</u>_____8 () • . 10^{-4} ∘H E ٩ Ag (AF) ٩ 0.1 ٩ 0.05; Æ Ø. Æ () ۵ • • 0.05 () . . ٩ 0 Æ, _ ٩ ۵ Ø. He • , o ∘G A 0 ₽(D) • et al... • Ø • 8 ∘et al., 2006; et al., 2007) ۵ LIK(• • et ۵ کے LI K (Æ. ۵ ۵ • et al., 2007) ۵ `. Æg 9 (_∘et al., 2006). F A. . A19

Principle component analysis

Gene-behavior association analysis

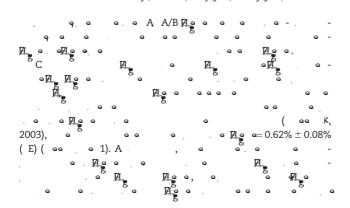
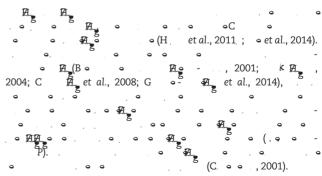
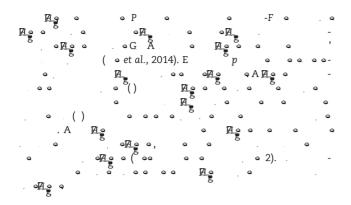

Tuble 1			<u>.</u>	5	8						
	F	Gee		С	%	R ² Ag	A $\circ \mathbb{R}^2$.	A Partial-F	p _{unc}	p_{perm}	p _{emp}
D o	a , a	TH	2	2	100	0.001	<0.001	0.712	0.491	0.484	0.485
		DDC	47	6	90	0.010	0.006	2.329	0.031*	0.031*	0.038
		VMAT2	17	9	90	0.003	< 0.001	0.501	0.875	0.878	0.862
	/	DAT1	16	6	91	0.005	< 0.001	1.027	0.406	0.408	0.466
	C o o	COMT	18	6	91	0.012	0.009	2.648	0.015*	0.014*	0.027
		MAOA	6	3	90	0.003	< 0.001	1.143	0.331	0.325	0.346
		MAOB	37	5	92	0.005	0.002	1.367	0.234	0.232	0.293
	• •	DRD1	1	1	100	0.000	< 0.001	0.097	0.756	0.756	0.780
		DRD2	16	8	90	0.004	< 0.001	0.721	0.673	0.680	0.770
		DRD3	41	12	92	0.014	0.006	1.617	0.081	0.081	0.099
٩	, e	TPH1	2	2	100	0.001	< 0.001	0.719	0.487	0.476	0.477
		TPH2	6	4	93	0.002	< 0.001	0.519	0.721	0.718	0.753
	٩	SLC6A4	8	3	90	0.006	0.004	2.795	0.039*	0.038*	0.03
	• •	HTR1E	16	6	91	0.007	0.003	1.545	0.160	0.158	0.199
		HTR2A	44	12	90	0.013	0.005	1.492	0.120	0.121	0.123
		HTR2B	3	2	100	0.001	< 0.001	0.596	0.551	0.551	0.519
		HTR2C	22	8	90	0.006	< 0.001	0.920	0.499	0.499	0.517
		HTR3A	4	4	100	0.001	< 0.001	0.364	0.834	0.831	0.833
		HTR3B	22	6	90	0.001	< 0.001	0.228	0.968	0.967	0.970
		HTR3C	2	1	99	0.000	< 0.001	0.124	0.725	0.724	0.67
		HTR4	46	14	91	0.015	0.005	1.422	0.135	0.136	0.07
		HTR5A	7	4	92	0.006	0.003	1.866	0.114	0.114	0.118
		HTR6	2	1	100	0.000	< 0.001	0.000	0.990	0.992	0.982
		HTR7	22	6	93	0.006	0.002	1.316	0.247	0.242	0.301
		HTRA1	34	9	91	0.007	< 0.001	0.974	0.460	0.456	0.441
		HTRA3	19	5	92	0.004	0.001	1.133	0.341	0.356	0.370

Table 1. • • Age • Age

C, \circ \circ \circ ; %, \circ \mathbb{A}_{g} \circ \circ C; p_{unc} , P \circ \mathbb{A}_{g} \circ F \circ ; p_{perm} , \circ P \circ p_{emp} , \circ P \circ * \circ P < 0.05.

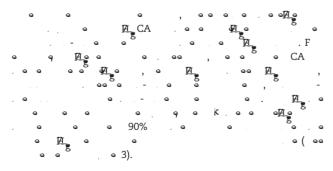

• P<0.05.

A., 9 -F 9 AgAg Ø 2 • (9 ٩ A. 9 • • , o 0 ٩ o<mark>∕∄</mark>o lysis) Principle component ana-Ae 0 99 ٩ 9 ۹E F • • æ. Ae •<u>∦</u> • 8 9 ٩ Ag A -F • ₩. A o) (1) (H et al., 2011). k ۰, • ()-(Ģ • • ۰: $\frac{\text{RSS}(\text{reduced}) - \text{RSS}(\text{full})}{\text{d}f(\text{reduced}) - \text{d}f(\text{full})} / \frac{\text{RSS}(\text{full})}{\text{d}f(\text{full})}$ Fk, df(full) =(1)


₽_• • (COMT, SLC6A, DDC MAOB: 0 ciatio. Agaee, Gageoc, C ••Gene-behavior association results ₽<u>_</u>_--٩). ٩ ٩ ٩ ٩ ٩ 9 ٩ 90 • <u>A</u> • A. 9 ٩ (COMT: P=0.028, SLC6A4: , <u>• A</u> • • • ٩ P=0.038, DDC: P=0.070 MAOB: • A_ P = 0.029٩ ٩), • <u>A</u> • 9

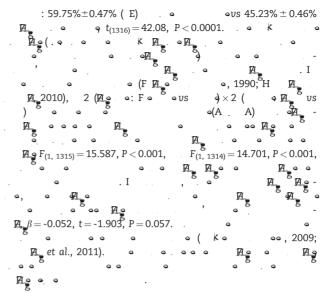
Permutation tests

Empirical tests



Protein-protein interactions

Κ ~ 12 Hoo I G 10 ~ ~ T 6 Ħ_ Go o/ ۵) k et al., 2015) k ~ ۵ ۰Ħ Ag 6 ۵ ۵ Ħ Æ ۵) ٥ ۵ AA 8 A 0 et al.. ۵ ۵ 1999: G k , 2003). I ۵ ۵ ۵ ۵ Æ_ 2004) (B et al., Ħ ۵ 2 9 ۵ ٩ •• ٩ Ħ Æ Ø ۵ ۵ 8 I G 10, CL ٠ ۵ Ø. =4), Ħ (• ۵ 2 Ø/ े व<u>्र</u> सब्ब, 2006), В (, :// 1. 00 ۵ A (•• F 🕰 o 1). ۵


SNP-SNP interactions

Results

Behavioral results

	, e			٩
et al., 2009;	et al., 2013; G	et al., 2016),	A_	æ.
• •	, o o , o	• K A	or A	ຸິ

Gene-behavior association results

Æ_ С ٩ 0 0 •• • COMT A • • Æ_(G ٩ A, et al., 2016), • **4** AgAg •<u>A</u> • 8 ∘COMT ⊉ ∘ ∘ • 0.9% Ģ Ø., R² • Æ <u></u>e 0.009, -F = 2.648, P = 0.015.۰. • et al. (2009) • • 5-H T. <u>ه الم</u> ع , . ٩ ۹, • • •SLC6A4 A. • 0.4% • • Ģ R² Æ<u></u>____0.004, -F = 2.795, P = 0.039. I • DDC 🗛 A 9 Ø, ٩ 9 \circ \mathbb{R}^2 <u>Æ</u>__0.006, -F = 2.329, P = 0.031,A. 0.6% • • <u>A</u> • • Ģ ĸ A ٥1). 8 Ø A 8 8 ۵ **a**∕a ۰C ۵ •. A 10 000 0 • 0 • (• 1), COMT: P = 0.014, Ø (c P = 0.038, DDC: P = 0.031.SLC6A4: 0 G 0 • Ae ħ 0 • . ∘(FD) Ø ٥oD KT4 ۰<u>۸</u>۰ 6 Æ 0 ٥Ħ ٥G A D Ħ Æ c 9 A. ۵ 1) 9 <u>ه (آ</u>وه ع • ٩ Ø ◦ 1), COMT: ◦ P = 0.027, SLC6A4: 0 0 ۹ (P = 0.037, DDC: ◦ P = 0.038. •MAOA/B 🗛 • Βο • 0 9 Ø. Æ, • • ٩ Δ

 MAOB
 MAOB

 MAOA Hoo

 CA

 Hoo

 <

æ,	<u>A</u> , •	, e ,	Aç o
- •DDC 🗛 •	ာိ •MAOB 🗛 ္	٩	
	۵. ۲	ø.	, e , e
FC- 🕰	• , ,	ຸຈິ	•• • • • •

- ВА, К.L., • А, D. . (2010). I А НА • . Neuroimage, 53(3), 804 9.
- B A, A, K, G, C, K, ., et al. (2003). B: Neuropsychiatric Genetics, **117**(1), 18 22.
- A k. B •• ., H • • , J. (2006). E ∘ A_A_ ĸ. BMC Bioinformatics, 7(1), 1.
- B, C., H , C., G _ , A. (2004). C A 9 . BMC Bioinformatics, **5**(1), 1.
- Д., А., А 9 F., Д. H., Д. H. (2008). • • Source Code for Biology and Medicine, **3**, 15. С Biology and Medicine, **3**, 15.
- C , ,, , K, H , B. ,, F A o, A., C o, ., Lo, K. (2005). Bo o: Ago K. Proceedings of the National Academy of
- Sciences of the United States of America, **102**(34), 12224 9.
- Co, D., J. o, ., A., ., K., (2012). O, K., Management Science, **58**(1), 21 34. 9 B. ۹.
- С. • , Ј. . (2001). А • HAG . Heredity (Edinb), ٩ **87**(1), 52 8.
- 87(1), 52 8. C , ., . ∘ , A.C., . . , . . (2008). ∘ 41_ ° ٩Æ Trends in Cognitive Sciences, **12**(1), 31 40. <u>ہ</u> ہ
- Research, **44**(11), 717 24.
- C , H., Ag, . (2012). Economics and Finance Research Paper (2012-01).
- Neuroscience, **4**(4), 399 408.

- ок к к д . Cognitive, Affective, & Behavioral Neuroscience, **12**(4), 678 91.
- H, D. ., K, , . ., •, J.L., C. A, .-C., , . . (2011). Ag Ag.
- H, E., B•, , ., F, , . (2004). B•• : # • A • • • J Autism and Developmental
- Disorders, **34**(2), 229 35.
- H A. ., A. L. (2010). • • A. . Personality and Individual Differences, 48(5), 649 53.
- IK , K., K , K., , K., , A., et al. (1999). , • • -• • , •,
- Æ, ۰. Neuroscience Letters, **269**(1), 37 40.
- J •, ., L , . (2014). (5-H L). • • Æ. • . Neurobiology. Progress in Neurobiology, 117,
- 41 53.
- K , D., K , A. (1979). • : K. Econometrica: Journal of the Econometric Society, 263 91.
- K. , D., K , A. (1984). C. •, •, •. American Psychologist, **39**(4), 341.
- K 🛛 , J., , .K., L., J., et al. (2006). F • • ⁵ A A A B K • • Movement Disorders, **21**(12), 2175 80.
- Ко, ., С о, ., С , L.G., et al. (2002). G о о -в 13 До о к д о о Neurotoxicology 23(4), 515 9.
- . • • . Neuropsychobiology, **56**(56), 191 6.
- K -K A, B. ., G , J., A, . . (2007). - Mo • C , H 1B, ••, . American Journal of Medical Genetics Part B: Neuropsychiatric Genetics

, D.E., С Д, ., B k, ., et al. (2001). L k До
 , D.E., С Д, ., B k, ., et al. (2001). L k До
 Nature, 411(6834), 199 204.
 , Foo, A., o, A., ko, ., Д
 , G. (2013).
 , A., o, A., ko, ., Д
 , G. (2013).
 , G.

Neuroscience, 7, 242.
A. ., G K, . (2003).
K. Proceedings of the National Academy of Sciences, 100(3), 1128 33.

. Genetic Epidemiology, 2/(4), 3+8 0+. H_{\odot} , C., , , 9 H.H., \circ , L. (2010). I H_{\odot} H_{\odot} , C., , ., 9 H.H., \circ , L. (2010). I H_{\odot} H_{\odot} , H_{\odot} ,