

Neural representations of competing stimuli along the dorsal and ventral visual pathways during binocular rivalry

Ce Mo^{1,}, Junshi Lu^{2,3,}, Chao Shi^{2,3}, Fang Fang D^{2,3,4,*}

¹ D		Ps.	, S	Y-S	U s	5 , G	51	.0006, G		, C	,									
² S	Р	ks.	С		S 😘	В	K L		В		М	Н	, P	U	ъ,	В	100087	7, C	,	
³ ID	G/M G	Ιs	В	R 🕏	, P	U	s ,₿	10008	57, C	,										
4P	-T5	С	L	S	5 , P	U	ъ,В	100087,	С											
*C	5		: S	Ps.		С	S	5 , P	U	5	, 52 H	R	, B	, 100	087, C	. E	:	@		
	' S://	. 5	. /	s /	/	/	' 96 /	/	<i>जन</i> :											
С	М	ISL				5														

Binocular rivalry arises when two discrepant stimuli are simultaneously presented to different eyes, during which observers consciously experience vivid perceptual alternations without physical changes in visual inputs. Neural dynamics tracking such perceptual alternations have been identified at both early and late visual areas, leading to the fundamental debate concerning the primary neural substrate underlying binocular rivalry. One promising hypothesis that might reconcile these seemingly paradoxical findings is a gradual shift from interocular competition between monocular neurons to pattern competition among binocular neurons. Here, we examined this hypothesis by investigating how neural representations of rivalrous stimuli evolved along the visual pathway. We found that representations of the dominant and the suppressed stimuli initially co-existed in V1, which were enhanced and attenuated respectively in extrastriate visual areas. Notably, neural activity in V4 was dictated by the representation of the dominant stimulus, while the representation from the co-existing representations of the rivalrous inputs to the dictatorial representation of the dominant stimulus in the ventral pathway, and advocated different cortical evolutionary patterns of visual representations between the dorsal and the ventral pathways.

Key words: binocular rivalry; inverted encoding model; progressive transition; co-existing representation; dictatorial representation.

Introduction

W	ક ક	Ę	5 5	
5 ,				
5	<i>с</i> ,	ĸ		rs rs noc (R
L.	≤ 2002 A	s B	2005) 7	ມ ເມ

5 ,5 ς, 5 Ϋ́ς, S► (. .). T ъ, ю, 55 ъ ς, 56 ъ -96-5 ъ ĸ, (W s . 2004; P 👟 С 2005; T 2006). H S , 5 5 ς, 5 ъ Ι ĸ, ъ ъ, 5 ъ, e, 56 лу<mark>к</mark>, ъ, ъ ъ, 5 ÷5, S (... ĸ, 56 55). I 5 ъ ъ ъ, ъ, , ъ, ъ. ζ, 5 5 . As ς, ъ, 5 'n, 56 ъ ς, ъ 'nς, ъ 5 5 . U 5 ς, 96 ъ R. 5,6, ъ, ъ ъ BOLD ч, **S**. W ĸ, 5 s, ĸ, 5 ъ 5 55 ъ, BOLDS ъ, ъ, ъ, 5 R 🕏 5 ъ (Н 5 2005; K Т 2005; H R 👟 2006). 5 F ъ ъ 5 56 5 ъ, κ, E, e, e, E, . A ъ ъ, ς, e, ъ 56 5 ъ ς, (M 🕤 565 1983; D C . 2012). H , S MRI-S (IEM) H 2009, 2013; S ; Es . 2015; S . 2 ടട (B S ട 2013; Es . 2016), 5 5 ъ ₅ (V1-V3, ъ 5 V3A, MT+, V4). T 5 55 55 5 5 5 55 5

			مپتر			20 S	. Е	
	5				. T		S	
			5					
,		5	5	•			20 -5	R ^μ
	,	90-s-s	5	5				
20-5	л¥́		. N	,		5	5	
		5				5 ,	s'	
							. Т	
ς,		5 55	5,5	5				.₩
		<i>م</i> ېټر	55					56

MRI data acquisition

MRI 3 T S MRI ъ ъP s, MRI 5 20-С Ρ Rъ U . F ъ ъ, EPI 🕤 (TR: 1,000 Μ **S**; TE: 30 ъ; : 90°). T ъ ъ 5 _ 2; **96**: 3 ; FOV: 212 × 212 5 (5 : 2 × 2) ъ, : 96 , ς, ъ, E, e,

 A
 $\mathbf{5}$ T1

 MP-RAGE
 (TR: 2,530
 $\mathbf{5}$; TE: 2.98
 $\mathbf{5}$; $\mathbf{5}$
 $1 \times 1 \times 1$ 3)
 $\mathbf{5}$ $\mathbf{5}$ $\mathbf{5}$

.

MRI data analyses

F	36	5	SPM8.	Т -
96				,
_	-	-96 (0	.015 H)	
F 5 ,	56			5
5 595	5			-
5 55			-	5
т				535.
L K			55	ייייייייייייייייייייייייייייייייייייי
5 5		ĸ,	,	÷
s FS.As		0		
(GLM) S		Ŕ		BOLD
ેર્ક ક		مي. مېتر		
S , 🛩		5		
ક ક		5	-96-	,
<i>7</i> 5				-
(55,	- 1	5	5	
) 595		Тъ	مي. م	5
				55
	-3	55		ъ, -
	₩ -	S BO	LD S	55(
5)		GLM		-
5 55 A	75	R	.01	5
		TEN	(C	С
∧ 50 κ 2013· Εκ 201	5 · C	1 L IVI	2016	.c
2013, LS . 201 2018· R	2019) B	01D -	, U K.
<u> </u>	. 2010,	, D	<u>, 1</u>)
بېر بېر	-96	5		, S

5	55	- 5 ,	5

B = WC

Bъ BOLD ς, ъ 55 74 S) ĸ, (ĸ, ≤), W ≤ (S) ĸ, ж, s, ĸ, **۲**5 (S.) ю, BOLDS Съ ъ Б, Ā. ю, 55 с, **S**). T IEM **ج**/ 55 ъ W) 5 •**s**: F ς, SS(. ъ, ъ, . T 556 ъ, 5 5 15° 165° 5 ъ, ъ, ъ, 5 30° 5 . F 5 ъ, ъ, 5 122.5° 337.5° 45° ъ ь, s, 7 . Т ъ 5 ъ, s ъ ъ s, ĸ, (Es 2015; R . 2019). H 5 ъ ъ, 55 ъ с, **s**. F ROI, .≁W ъ 55 5 ĸ, ÷5, (OLS) ъ s.⊬s 56 :

$$\hat{\mathbf{W}} = \mathbf{B_1} \mathbf{C_1}' (\mathbf{C_1} \mathbf{C_1'})^{-1}$$

ROI B_1 E, (96 ь, 128 ч, ъ 56 5 74). C₁ 55 ъ ĸ, ъ, ъ, ĸ, 5 5 S S Ā, S ĸ, £, 5 ъ s, ъ ,

$$\textbf{C}_{\textbf{2}} = \left(\hat{\textbf{W}}^{'}\hat{\textbf{W}}\right)^{-1}\hat{\textbf{W}}^{'}\textbf{B}_{\textbf{2}}$$

B₂ יג אין אי אי BOLD יג יג אי ROI

୦° (-).H , -୫୫୫ ୫୫ ୫୫

Results

Orientation rivalry

А	55	IEM,	5	BOLD
5		ليهتر		-
5	5	55	5	s -
5				- <u>-</u> 5
Ś	•			s . T
IEM,				2
<u>ج</u>	5.F 5	,	,	5
s (ROIs)		ς,	ج (¹	V1-V4
V3A)		5	96 , S	,
5 S			S(S)
5	5		- <i>יק</i> ר	S BOLD
SSS ROI				
5.96 (F.1A). F	,	5		5
BOLDS	5			5 55 5
5		5 5	5	5 5
			(E 1	
к кос кс	ĸ		(1 . 1	.D). I
		S	ĸ.	к,
Аў. 24	с. К.	. 0	5	
5	-			-
C C			,	5
		5		-
B S		-		-
-		Ś	S	5
5		,		
5	(F.2	A). F	5	,
	,	ંદ		
's				31 -

31 -591()12(**s**7)-60 4(IE3(K 8(-590([(B S [(B 4(IE3

 $t_{(9)} = 2.817, P = 0.02),$ ъ ъ 5 £, $(t_{(9)} = 5.633,$) ъ ъ (. ъ, P = 0.002). T 5 5 *.*⊮. T ъ £, ĸ, 96 'n, £, s, ÷5, 56 V1, ÷ V1 5 ъ E, ĸ, C. ζ, (F . 3A). ъ 5 ĸ, 5 М ъ ъ ъ ъ ъ 74 'nς, ъ ч5, (. .). ъ

 Fig. 3. A-E) R
 5
 5
 5
 ()
 ()

 *5
 S.E.M.
 56
 5
 ()
 ()

_

Т 5 5

96 S. ъ, ъ Ņ ъ, ъ, ъ E, 1998; F Η **∽** (H ъ, ъ 2005). W ς, ъ V3A ъ 96 ъ ĸ, E, Ņ ъ, ς, ς, 55 E, **s**. T ъ, Ņ ĸ, ъ. Fs, ÷5, ĸ, SE. ъ, 💪 (RDK) 5 5 . S MT+ 5 56 ъ, **s** V1-V4 V3A ъ . T 56 ĸ, BOLD 🕤 5 56 s, ъ, E, 55 e, 96 5 **s**. W ъ 5,6, 5 , 0° **5**. N ъ . F ÷, ъ E, ±180° лų. (RDK) ъ ъ ъ £ S ъ, ъ IEM. B s, ъ RDK5 ъ ъ, ъ, (F . 2B; RDK: 3.69 S, RDK: 3.90 S, W ъ λ¢. ≤: P=0.14). A ÷, 0° ±180°) ъ ら (F . 4, ς, ъ, **s**: V1: $t_{(9)} = 14.237$, V2: $t_{(9)} = 18.380$, V3: $t_{(9)} = 11.153$, V3A: $t_{(9)} = 13.731$, MT+: $t_{(9)} = 15.294$, V4: $t_{(9)} = 11.366$, $p \le < 0.001$) . M 0° 5 s, 555 (F.4, ъ, 5 ъ, -**S** : V1: $t_{(9)} = 8.709$, V2: $t_{(9)} = 17.416$, V3: $t_{(9)} = 13.961$, V3A: $t_{(9)} = 8.210$, V4: $t_{(9)} = 13.898$, MT+: $t_{(9)} = 12.471,$ *p*s<0.001). T s s s

S.	75	IEM
	5	5 56

В		5	5	5 ,			5		
	5		5			5		5	
	5		•	5. W			5		5
		5	5	-		5	5		-
×		<i>74</i>		1	5	5		Υ.	, 171
5 4.		ĸ.	5	+180)°		ĸ.	ĸ.	∨⊥, (
5	-96	5		100			3	3	(
•	5	(F	. 4A,	ر t (9) = 5	.237,	P < (0.001).	Т	5
÷	5	Ś		(2)			,		
	5	5		5			5, 5		
	5	0°		5	5			ъ,	
±1	80°		5	ъ (F	. 4I	3-F,	V1: t ₍	$y_{0} = 4.$	331,
V2: t ₍₉₎ =	= 10.067	, V3: t ₍	(₉₎ = 1	6.152,	V3A:	: t ₍₉₎	= 12.68	32, N	IT+:
$t_{(9)} = 11.$	355, V4	$t_{(9)} = 1$	L3.54	5, <u>p</u>	95. <().005 c). M ₹	5	-
,	ĸ		5			5	-55		
V4 (F	4E) S	5	кę				¥,		
(55				5	V3A	N	, ЛТ+
(F.4D	F).								
T		5		,				5	÷5,-
5	<i></i>								-
	5					5	36		<i>م</i> ېتر
-96		5		5	5				
	<i>№</i> Г	2 04E	. 51 ת	3, · 0.010\	- т.	c	-		5
ANOVA	, r _(5,45) :	= 5.045	, r =	0.019).		5	KC KC		
		5					5		_
S		-					-		
5		. W				5	ŝ	5	
5	5 4	/		-					SI
						5	-56	•	Ϋ́ς,
		. S							
<i>7</i> 4	,		,	SI			Ę	,	
۲ ۲۱ ، ۲۷۵	, , , , , , , , ,	01 171	(- • • •	006	۸ <i>در</i> ۲	5	DΟ	:
$v \perp < v \angle$. r < v.v	UΙ. VΙ ·	< v 3/	λ. r = 0	.000.	VDA	< v 4	r = U.	UUT.

V1 < V2. P < 0.001, V1 < V3A. P = 0.006, V3A < V4. P = 0.001, 95% C.I.: V2-V1: [0.11, 0.57], V3A-V1: [0.06, 0.46], V4-V3A: [0.06, 0.33]). I , SI V4 ≁ V3A S MT+ (P=0.008, 95% C.I.: V4-MT+: [0.03, 0.31]),

								<u> </u>
Ι	ς,	,	5	5			×.	5
5	-96	.~~ ∖	/3A	MT	+ (P=	=0.46,	95%	C.I.:
V3A-N	MT+: [-0.2	21, 0.16]). I			5			►'
5	-96							5
	. F	,		SI	V4	55	5	
5	5				(P =	=0.16,	95%	C.I.:
[0.79,	1.06]),	SIS					ς,	
5	5		1 (V1	L: P•	< 10-	⁴ , V2:	P = 0	.029,
V3: P =	=0.029, V3	A: P < 10 ⁻	⁴ , MT⊣	⊢: P =	= 0.00	1, 95%	6 C.I.	: V1:
[0.26,	0.71], V2:	[0.61, 1.0	1], V3:	[0.6	57, 1.	00], V	3A: [0.64,
0.82],	MT+: [0.6	52, 0.91]).	T					

 Fig. 4. A-F) R
 5
 5
 5
 ()
 ()

 S
 5
 S.E.M.
 56-5
 5

Discussion

DISC						5	5			5	-96,
Us.	MRI- 🕤			55 ,	5		- J¥S	V1		Ę	5 5
55	5		5	5		5		ъ.М	,		-
	555	(5						5	56 S	5 5
	5)	. W				5		5		5	5

ry.

Т

5

С S

ĸ,

5

2021).

(C

. N 5 , ч, ĸс, ĸ, 5 ъ ъ V4, ъ ъ ъ, ς, 56 (... V3A MT+). T ъ, 5 ъ 56 - ,₇45, , S ъ, ъ, 'n, V1 V4, ъ 5 ъ ъ, 5 s, лų. Ā 0 s, ъ, ĸ, ĸ, s, ÷5, ĸ, 5. F IEM 55 ĸ, s, 5 E, ĸ, ъ, ъ ĸ, ĸ, ъ S V1. Т ъ 55 ъ s, MRI 🕤 (P . 2000; S 5 Т . 2005; L Е 2001; H 5 . 2005; W . 2005; L . 2007) s ς, ъ ъ ъ, ъ, -36 ς, 2016; Z (B 🕤 2015; X . 2016). M 5 5 5 V1 5 56 ъ, ъ ъ ъ 5 ъ V1 (H . 1996; H 5 5 s 2005; H Η M L 2001; C 5 R 👟 2005; Z . 2012). T 5 E, V1 ς, ĸ, ъ ъ, **56.** S 96 s, 56 5 56 s, ĸ, V1 ъ 5 ъ. £ S V4 ъ s, ъ ъ s, ъ, ĸ, ъ 96 5 5. T 5 5 V4 5 E, ъ, (L **•** 1996), **•** ъ, L s, 5 5 ĸ, λ. 5 (T . 1998). I 🕤 ъ, S 5 55 ъ, SC. ъ 56 5 ĸ. ĸ, 5 ъ ъ ъ, ÷5 . 2020; W (J . 2021). M ъ 5

ъ

96? 55 ς, ĸ. I V1, **S)**, ъ, ς, ÷, ъ, . 2015). (LGN) (L W 5 5 V1, ĸ, ъ ς,), E, ъ, ю, (. . ь, ALC. ĸ, ĸ, ъ . As s ю, ъ, E, £, ъ E, s ĸ, e, ς, ъ, зc,). S SS(... ъ, 55 ĸ, (Z <u>z</u>e 7.0 . 2011; S S ≤ 2013; W . 2013; 2018; G . 2020), М ъ ъ 5 e, s K, K, £, ĸ, ÷5 ъ **5**. N ъ 56 ĸ, ъ ъ Ā. V4 ъ 5 ĸ, Ā, 2015; Z F **S** (0 . . 2019). O 2015; K ĸ, ÷5, ъ ъ ъ, ъ, ъ 55 ъ, 56 ъ ь, ÷96. 5 Η ъ s, E, ъ E, 0 5 ÷5 ъ ÷96ъ 5 5 ъ. Ο ъ ъ ъ E, e, V4, ъ S ъ ъ 55 . М 5 Ā. ъ. ъ ÷, ĸ, ĸ, ĸ, ÷,

ъ

ĸ,

E,

ĸ.,

ĸ,

ю,

2005).

96

ъ,

c,

с (Р

56

s,

÷,

5

Т 5 ъ ъ ъ, ĸ, £ ъ 56.5 ъ, **-5**. F ъ ъ, 5 ч, 5

S ъ, S **ড** (G M 1992; P 2019), ড (H . 2005). M , ড **ড ড, ড ড** MT+, ড ъ, S 2019), e, -<u></u>, <u>,</u> ς, LGN -96 **ら** (S . 2004). As S ъ 5 ъ, 96 5 ъ 5 ς, £, 5 S, S ς, 5 5 ĸ, ĸ, MRI s.I ъ ъ, BOLD 🕤 55 ъ, 5 ъ, ĸ, κ, s, H 2005) ς, (F 56 5 ÷ε.(D . 2008), 55 **'96** 5 ъ ĸ, ĸ,' s, s, . A ъ, ъ, 5 ъ s, 55 5 (H 😘 ъ ъ, Μ 2011; H s . 2018), 55 5 .⊼ţ⊀ 5 96 (F 5 5 5 ÷5, . 2014). I 55 s M £, 5 5 5 ક જીક (A . 2008; A ζ, . 2010). T 5 E, 5 565 s, 56 А ъ S ъ, V4 s, E, ĸ, s, 55 1 ъ.Fъ, 5 ъ ς, 5 ъ, V4. I 😘 ς, 5 V4 5 ъ 5 56 s.I 5 s, ъ, V4.I ち ю, ъ 5,5 5 5 5 5 S -5 (S . 2009; K . 2011; B 🕤 2018). I 5 5 ĸ, жS 5 5 , 5 5 5 λ. S 5 5 -5 . 2021). S , € (W

ъ,

						СМ	et al.	2	745
5			5		MRI	, rc	ĸ		-
		5	96 S		55	5	5		
F	5	ĸ	5	5					
I	5	,	-	S				55	-
	Σ¢ ⁴					S		5	% -
	.W	5 5				5 5	5		-
r,	5		5			56,	,		
			'96	5	-5 . T	5		5	
5			5	5 56	5				
	5						ς,	ς,	
		5		55	5.				

Funding

 T \$5
 \$5
 N
 S

 T
 I
 2030 M
 P
 2022ZD02048

 02,
 N
 N
 -267()29441.034

- D TH, S D, B YS, H DJ. O **s** ૬ ૬ 5 ς, J Neurosci. 2008:28:10298 10310.
- Es EF, S TC, S SJT. P ૬ ૬૬ ૬ . Neuron. 2015:87:893 905.
- FF, HS. C 5555 ĸ, s. Nat Neurosci. 2005:8:1380–1385. 5
- s SV, K PJ, M KJ, G R, Ts PU. U s F . .- ru. U S κ, 365 5 • . Front Psychol. 2014:5:601.
- GY, ZH, QC, ZP, WL, HS. A 5 S к. . Nat Commun. 2020:11:3925.
- MA, M AD. S 👟 G . Trends Neurosci. 1992:15:20 25.
- 55 H SID.R SG.P 🖌 🖉 🖈 Nat Neurosci. 2005:8: 686 691.
- HsJ-D, RsG. Dss 🕤 Nat Rev Neurosci. 2006:7:523 534.
- 5 H 🕤 J-D, D R, R 🕤 G. E 🏎 🕤 Nature. 2005:438: 496 499.
- H S, M L DI. O -5 S Nature. 2001:411:473 476. H S, C P, I J. A 5 ፍ Nature. 2001:411:473 476.
- ÷, **5. 56.** Nature. 1996:383:334-337.
- H S, C ER, H X. C 🕤 MT/V5 . Curr Biol. 5 1998:8:1215 1218.
- H S, C 💪 T, C X. Parallel pathways and temporal dynamics in binocular rivalry; MIT 🛛 🛥 2005.
- H 🚓 G, M R. T MRI-BOLD 3655 - ₽' **5 5 5** . Cereb Cortex. 2011:21:2829 2837.
- H 966 G, D N, R M, S P. I 56 s-- 🛩 s--
- **⊮** 55 👟 👟 🦡 . J Exp Psychol Gen. 2018:147:1641.
- J MC, V 😘 🕏 MJ, E R, L FSS, R 🕏 NF, D HC, D SO, K THJ. I 5 55 ς, Υ. 💉 👟 👟 Curr Biol. 2020:30:3089 5 3100. 4.
- K Y, T F. D 👟 κ. . Nat Neurosci. 2005:8:679 685.
- К Т, В W, Р ち А. N ち V4. J Neurosci. 2019:39:4760 4774.
- К М, В D, P D, I л, м W S Ps +3? Perception. 2007:36:1 16. т F R B R. T D, P D, I A, M R, B 🐝 C.
- **•** .J Neurosci. 2011:31: 10293 10301.
- L SH, B R, H DJ. T S A . Nat Neurosci. 2005:8:22 23. L SH, B R, H DJ. H S S S .
- . Nat Neurosci. 2007:10:1048 1054. DA, L S NK. A S S -* S' S . Nature. DA, L L 1996:379:549 553.
- 5 56 L S, P MS, T F. A 🕤 Nat Neurosci. 2015:18:

- L SNK, S JD. N SS 5 . Science. 1989:245:761 763.
- s NK, L DA, S DL. W s T ? Nature. 1996:380:621 624.
- s. : s. Trends Neurosci. 1983:6:414 417. M. C, H. D, F. F. A M & M, U LG, M KA. O & S : S Trends Neurosci. 1983
- د J Neurosci. 2018:38:149 157. M C, L J, W B, J J, L H, F F. C
- د د د ج Nat Commun. 2019:10:5264.
- G, T S, K 😮 H. I 😮 🕏 🕏 0 🛪 😘 😵 V4. Proc Natl Acad Sci. 2015:112:E351 E360.
- њ J, C CW. S ње с Ρ . Curr Biol. 2005:15:2142 2148.
- ち A, B R, B J, H DJ. N ち *×* ち . Nat Neurosci. 2000:3:1153 1159. Ρ ち S, M A, N AT, T F. F -
 - 555 . Curr Biol. 2019:29:2051 2057. 3.
- . Curr Biol. 2013-23-23-23-23-23-2 RL, C د C, S د JT. C جرم R ς, 555 Nat Neurosci. 2019:22:1336 1344. ببر
- S A.A 💉 🖒 MRI-55 . J Neurosci Methods. 2009:177:199 202. sNK.T s S DL, L
- . Proc Natl Acad Sci. 1997:94:3408 3413. S LC, P KF, W MJ, H JC. B 😖 V1: MT. Nat Neurosci. 2004:7:
- 1123 1128. S TC, S sJT. A 55 5 🕤 Nat Neurosci.
- 2013:16:1879 1887. S TC, Es EF, S s JT. R s
- EF, S SJT. RS S S Neuron. 2016:91: 694 707.
- S TC, A KCS, F S JJ, R M, S DW, V

- 3231 3242. Z P, J S K, E S, H B, H S. B S
- **s** . Neuron. 2011:71:362 369.
- - Z CM, F J. R S S > Proc Natl Acad Sci. 2015:112:942 943.
 - Z J, H S, Z P. B S. S. Proc Natl Acad Sci. 2016:113:8408 8413.