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Rapid detection of a threat or its symbol (e.g., fearful face), whether visible or invisible, is critical for human survival. This function
is suggested to be enabled by a subcortical pathway to the amygdala independent of the cortex. However, conclusive electrophysiologi-
cal evidence in humans is scarce. Here, we explored whether the amygdala can rapidly encode invisible fearful faces. We recorded in-
tracranial electroencephalogram (iEEG) responses in the human (both sexes) amygdala to faces with fearful, happy, and neutral
emotions rendered invisible by backward masking. We found that a short-latency intracranial event-related potential (iERP) in the
amygdala, beginning 88 ms poststimulus onset, was preferentially evoked by invisible fearful faces relative to invisible happy or neutral
faces. The rapid iERP exhibited selectivity to the low spatial frequency (LSF) component of the fearful faces. Time-frequency iEEG
analyses further identified a rapid amygdala response preferentially for LSF fearful faces at the low gamma frequency band, beginning
45ms poststimulus onset. In contrast, these rapid responses to invisible fearful faces were absent in cortical regions, including early
visual areas, the fusiform gyrus, and the parahippocampal gyrus. These findings provide direct evidence for the existence of a subcort-
ical pathway specific for rapid fear detection in the amygdala and demonstrate that the subcortical pathway can function without con-
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intracranial electroencephalogram (iEEG), which enables the
direct electrophysiological recording with a high temporal
resolution in the amygdala, a previous study has revealed
fear-selective amygdala responses occurring at a rapid speed
(Méndez-Bértolo et al., 2016). However, whether such a rapid
amygdala response occurs with invisible fear is still unknown.

Based on rodent research (LeDoux, 1996), a low-road model
suggests that rapid fear detection in the amygdala is enabled
through a subcortical pathway, which transmits coarse informa-
tion through the superior colliculus and pulvinar to the amygdala,
bypassing the typically time-consuming cortical pathways
(Tamietto and de Gelder, 2010). Alternatively, a multiroad
model proposes that cortical pathways, which contain a
multitude of shortcut anatomic routes relaying visual infor-
mation to the amygdala from the extrastriate visual cortex,
can be equally fast at transmitting fear as the subcortical
pathway (Pessoa and Adolphs, 2010). As such, the evidence
of rapid amygdala response alone cannot discriminate between
the two models. To identify the contribution of the subcort-
ical pathway, rapid amygdala response should be examined
after minimizing the information transmission in cortical
areas.

Unconscious fear processing offers a way to minimize in-
formation transmission and processing through cortices while
retaining the subcortical contribution. The subcortical path-
way is more sensitive than the cortical pathway to invisible
stimuli (Tamietto and de Gelder, 2010; Diano et al., 2017).
Invisible stimuli are either insufficient to evoke cortical
responses or evoke much weaker responses than visible stim-
uli (Tamietto and de Gelder, 2010). On the contrary, invisible
stimuli can evoke equal or even stronger responses in subcort-
ical structures, including the amygdala, superior colliculus,
and pulvinar, relative to visible stimuli (Morris et al., 1999;
Brooks et al., 2012; Axelrod et al., 2015). Unconscious emo-
tion processing may even adaptively increase the involvement
of the subcortical pathway, as destruction of visual cortices
strengthens anatomic connections of brain structures along
the subcortical pathway (Tamietto et al., 2012). Furthermore, the
subcortical and cortical pathways dissociate on their responses to
low and high spatial frequency information. Specifically, although
the cortical pathway is preferentially sensitive to the high spatial
frequency information, the subcortical pathway responds to the
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were instructed to identify the facial emotion and make a response within 2000 ms.

Table 2. Emotion discrimination performance in each condition

Accuracy (%) d’
Fearful Happy Neutral Fearful Happy Neutral
LSF 21.53 (13.13) 26.62 (12.00) 38.19 (22.05) 0.18 (0.33) 0.13 (0.23)  0.05 (0.12)

HSF 22.45 (11.87) 21.30 (11.87) 39.58 (25.19) 0.25 (0.31) 0.09 (0.24) —0.00 (0.29)
BSF 38.89 (17.74) 52.08 (23.78) 44.21 (26.84) 0.70 (0.88) 1.19 (1.21)  0.86 (1.04)

Numbers in parentheses are SDs across patients.

contact was amplified using a Nicolet clinical amplifier. iEEG data at
each electrode contact site were sampled at 256 Hz for one patient and
512 Hz for the remaining patients. All signals were online high-pass fil-
tered at 0.16 Hz using a two-way least-squares finite impulse response
filter and referenced to a forehead scalp electrode. Implantation sites of
the EEG electrodes were determined exclusively by clinical criteria.

Stimuli

We compiled the faces of 96 different actors (48 females) posing with fear-
ful, happy, and neutral expressions from two databases, Radboud Faces
Database (https://rafd.socsci.ru.nl/RaFD2/RaFD?p=main) and NimStim
Set of Facial Expressions (https://danlab.psychology.columbia.edu/content/
nimstim-set-facial-expressions). Images were processed following the pro-
cedure by McFadyen et al. (2017). Specifically, all images were gray scaled,
equalized in mean luminance, reshaped into the same size (5° x 6.3°), and
cropped to exclude most hair and background. To create faces containing
low or high spatial frequency information, the original face images (BSF)
were filtered using a low-pass cutoff of <6 cycles per image (LSF) and a
high-pass cutoff of >24 cycles per image (HSF), respectively. Each identity
appeared in all nine conditions (3 emotions x 3 spatial frequencies). For
each patient, 432 images were randomly selected from the image set,
resulting in 48 images per condition. Faces with the same emotion and
spatial frequency should not appear more than three times in a row.
Visual stimuli were presented using MATLAB (MathWorks) software
with Psychtoolbox-3 extensions (Brainard, 1997).

Experimental design

Faces were centrally displayed on an LCD screen (refresh rate, 60 Hz) for
33ms, followed by a 467 ms white noise mask, whose mean luminance
matched that of the face images (Fig. 1). A fixation cross was then pre-
sented on the screen for 2000 ms, during which patients judged whether
the facial expression was fearful, happy, or neutral via key pressing. This
forced-choice emotion-discrimination task was used as an objective cri-
terion to assess emotion awareness. A chin set was used to keep the view-
ing distance and to keep the patient’s head as still as possible. Patients
were asked to avoid verbalization and minimize eye blinks. The

Stimuli and procedure. A, Examples of BSF, HSF, and LSF face images with fearful, happy, or neutral emotion. B,
A face image was presented for 33 ms, followed by a 467 ms white noise mask to prevent awareness of the face. Patients
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experiment consisted of three blocks, each con-
sisting of 144 trials and lasting ~6 min.
Patients took a break after each block.

Data analysis

Patient inclusion. Of the 13 patients with
amygdala electrodes, three were excluded
because of excessive noise in their iEEG signal
or failure to identify any discernible stimulus-
evoked components during the 500 ms post-
onset interval. To ensure the invisibility of
masked faces, we compared each patient’s
performance in the forced-choice test to the
one-tailed 5% cutoff (39%) of the chance distri-
bution of correct choices (Degonda et al.,
2005). One patient’s performance exceeded
this cutoff in emotion discrimination of
LSF and HSF faces and was excluded. Despite
the short presentation duration and the back-
ward masking effect, we found that ~50% of
the patients exceeded the chance distribution
cutoff in emotion judgment for BSF facial
expressions. So, BSF faces were not used in the
iIEEG experiment. Furthermore, contacts that were in the seizure onset
zone or severely contaminated by epileptic activity were removed. Overall,
nine patients with amygdala electrodes (10 electrodes with 33 contacts)
were retained. Using the same inclusion criteria as above, six patients with
EVA electrodes (8 electrodes with 28 contacts; V1, 16 contacts; V2, 8 con-
tacts; V3, 4 contacts), four patients with FG electrodes (5 electrodes with
13 contacts), and four patients with PHG electrodes (6 electrodes with 14
contacts) were retained (Table 1).

Electrode localization. To localize the electrodes, we integrated the
anatomic information of the brain provided by preoperative magnetic
resonance imaging (MRI) and the position information of the electrodes
provided by postoperative computer tomography (CT). For each patient,
we first coregistered the postimplant CT with the preimplant anatomic
T1-weighted MRI for each patient using SPM12 software (https://www.
fil.ion.ucl.ac.uk/spm/software/spm12/). We then identified electrode
traces in the aligned CT images and calculated the coordinates of con-
tacts in Brainstorm (http://neuroimage.usc.edu/brainstorm; Tadel et al.,
2011). To assign the anatomic label to each contact, we performed sub-
cortical and cortical segmentations based on individual preoperative T1
MRI using FreeSurfer version 6.0 (Dale et al., 1999). We identified amyg-
dala contacts as those localized in the amygdala and further verified
them in each patient’s native T1 space. An anatomic atlas for retinotopic
visual areas V1-V3 (Benson et al., 2014) was used to locate EVA con-
tacts. A high-resolution single-subject atlas (USCBrain; Joshi et al., 2022)
was used to locate FG and PHG contacts. To identify cortical contacts,
we projected each contact to the nearest vertex on the individual cortical
surface using MATLAB function dnsearch and assigned the contact to a
cortical area based on the projected vertex. For illustration purposes, the
coordinates of contacts were normalized to the MNI space and visual-
ized on the template brain cvs_avg35_inMNI152.

Preprocessing. Preprocessing was performed using the FieldTrip tool-
box (Oostenveld et al., 2011) in MATLAB R2020b. Raw iEEG data from
each contact were imported into MATLAB. For each contact of each
electrode, epochs from —100-500 ms peristimulus onset were extracted
from continuous iEEG data. Data epochs containing interictal epileptic
spikes or recording artifacts were identified by visual inspection and
removed from the analysis. Detrending and baseline correction (100 ms
prestimulus baseline) were then performed. No filtering was applied to
avoid latency artifacts because of waveform distortion. Finally, epochs
were averaged across trials for each experimental condition to obtain
iIERPs for each contact.

iERP analysis. To determine the time points of significant iERP dif-
ference between the fearful/happy faces and the neutral faces in the LSF
and HSF conditions, a cluster-based nonparametric permutation test was
applied to the iIERP amplitude across all contacts (Maris and Oostenveld,
2007). By clustering neighboring samples (i.e., time points) that show the

2000 ms
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same effect, this test deals with the multiple-comparison problem while
taking into account the interdependency of the data. For each sample, a
paired sample ¢ value was computed. All samples whose ¢ value exceeded
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Figure 3.

Time-frequency analyses of iEEGs in the amygdala. A, Statistical parametric maps of the time-frequency representation for the fearful (left) and happy (right) versus neutral face

comparisons in the LSF condition. Red contour indicates the significant time-frequency cluster. B, Comparison of early low gamma amplitudes (a.u., arbitrary unit; frequency, 27-33 Hz; time,
45-118 ms) between the fearful/happy and neutral faces in the LSF condition. (, Statistical parametric maps of the time-frequency representation for the fearful (left) and happy (right) versus
neutral face comparisons in the HSF condition. D, Comparison of early low gamma amplitudes between the fearful/happy and neutral faces in the HSF condition. E, The amplitude (Amp.) differ-

ences of the early low gamma cluster for single amygdala contacts. Error bars indicate SEM across contacts. ***p << 0.001, *p << 0.05 (two-tailed paired t tests, Bonferroni corrected).

0.01 (Fig. 2C, left). Meanwhile, no significant cluster was identi-
fied in the HSF condition (Fig. 2C, right). No response difference
was observed between the happy and neutral face processing in
either the LSF or HSF condition (Fig. 2C). We then compared
the IERP responses between the LSF and HSF fearful faces. A sig-
nificant cluster was identified showing a larger iERP response to
the LSF than to the HSF fearful faces at an early latency (Fig. 2D,
50-202 ms).

To confirm the above findings, we extracted the iERP peak
amplitude within the time window of 75-175ms (Fig. 2C, gray
shaded areas) for each emotion and SF condition. A linear

mixed-effects model that included the electrodes, amygdala
sides, and patients as random factors was used to examine the
IERP peak amplitude difference across the emotion condi-
tions. We found a marginally significant emotion by SF inter-
action effect [x?(2) = 5.51,p = 0.064]. Consistent with the
finding in the cluster-based permutation test on iERP wave-
forms, the main effect of emotion was significant in the LSF
condition [x2(2) = 9.16, p = 0.010] but not in the HSF condi-
tion [x%(2) = 0.63,p = 0.731]. Specifically, the peak ampli-
tude was larger for the LSF fearful faces than for the LSF
neutral faces (Fig. 2E, left; t32 = 2.84, p = 0.024 Bonferroni
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corrected, Cohen’s d = 0.49). The peak amplitude difference
between the LSF fearful and neutral faces was also significantly
larger than that between the LSF happy and neutral faces (Fig.
2E, left; t(32) = 2.55, p = 0.048 Bonferroni corrected, Cohen’s
d = 0.44). No peak amplitude difference between the fearful/
happy faces and the neutral faces was observed with the HSF
component (p values > 0.05; Fig. 2E, right). Altogether, these
findings demonstrate a rapid, LSF-specific amygdala response
to invisible fearful faces, supporting the subcortical emotion
pathway model (Vuilleumier et al., 2003).

Rapid low gamma oscillations to invisible fearful faces

To further depict the frequency profiles of the iEEGs in the
human amygdala, we performed a time-frequency analysis on
the iEEGS in each emotion and SF condition. We found that the
amygdala showed an early power increase (45-118 ms) at low
gamma band (27-33 Hz) in response to the LSF fearful faces rela-
tive to the LSF neutral faces (Fig. 34, left). Such a difference was
not found in the LSF happy versus LSF neutral face comparison
(Fig. 34, right) or in the HSF condition (Fig. 3C). The mean am-
plitude of the early low gamma cluster was significantly higher
for the LSF fearful faces than those for the LSF happy (ts2) =
2.68, p = 0.024 Bonferroni corrected, Cohen’s d = 0.47) and

-01 0 0102030405 -01 0 0.10.20.3040.

Time (s) Time (s)

neutral (¢ = 4.50, p < 0.001 Bonferroni corrected, Cohen’s d =
0.78) faces (Fig. 3B). There was no difference in the HSF condi-
tion (Fig. 3D; p values > 0.05). We further visualized the ampli-
tude differences of the early low gamma cluster for amygdala
contacts on a brain template. As shown in Figure 3E, the effect
was not localized to specific dominant contacts but was distrib-
uted across multiple contacts. Therefore, the rapid, LSF-specific
amygdala response to the invisible fearful faces may be driven by
the low gamma band oscillations.

No selective rapid response to invisible fearful faces in the
visual cortex
Although the rapid LSF-specific amygdala response to the invisi-
ble fearful faces suggests a subcortical pathway for fear process-
ing, it does not exclude the possibility that the fearful face
information can be transmitted via cortical pathways. To exam-
ine this possibility, we analyzed cortical responses in patients
who had electrode contacts in cortical regions along the ventral
visual pathway, including the EVAs, the FG, and the PHG.

For the EVA contacts (Fig. 4A; 6 patients, 8 electrodes with
28 contacts in total), in contrast with the effects observed in the
amygdala, we did not find any early effect in the LSF or HSF con-
dition with the fearful/happy faces, relative to the neutral faces. A
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Time-frequency analyses of iEEGs in visual cortex. A—F, Statistical parametric maps of the time-frequency representation for the fearful/happy versus neutral face comparisons in

the LSF condition in EVA (A), FG (B), and PHG (€) and those in the HSF condition in EVA (D), FG (E), and PHG (F). Red contour indicates the significant time-frequency cluster.

late-latency cluster (344-375ms) was identified for the fearful
versus neutral face comparison in the HSF condition, suggesting
that the selectivity to HSF fearful faces emerged at a late stage
(Fig. 4D, right). Next, we extracted the iERP peak amplitude
within a 100 ms window surrounding the peak (i.e., 75-175ms)
for each emotion and SF condition (Fig. 4D, gray shaded areas).
The linear mixed-effects model, same as that applied to the
amygdala contacts, showed no emotion by SF interaction effect
in the EVA [x2(2) = 0.05, p = 0.974]. For the FG contacts (Fig.
4B; 4 patients, 5 electrodes with 13 contacts), no cluster showed
significantly different iERPs to the fearful/happy versus neu-
tral faces in either the LSF (Fig. 4E, left) or the HSF (Fig. 4E,
right) condition. No emotion by SF interaction was found
with the peak amplitudes [Fig. 4E, gray shaded areas; 75-
175ms, x?(2) = 3.69,p = 0.158] either. For the PHG con-
tacts (Fig. 4C; 4 patients, 6 electrodes with 14 contacts), no
early effect was found for the fearful/happy faces relative
to the neutral faces, and no emotion by SF interaction was
found with the peak amplitudes [Fig. 4F, gray shaded areas;
125-225ms, x?(2) = 1.17, p = 0.556] either. Because the effects
in the early visual cortex occurred much later than those in the
amygdala, they could not explain the rapid response in the
amygdala.

We further performed time-frequency analyses on cortical
IEEGSs. As shown in Figure 5, no early effects were found for the
fearful/happy versus neutral face comparisons in EVA (Fig. 54,
D), FG (Fig. 5B,E), or PHG (Fig. 5C,F) in either the LSF or the
HSF condition. Only late effects at the beta band were found in
FG (Fig. 5B). Collectively, the absence of rapid responses to

invisible LSF fearful faces in the ventral cortical stream argues
against the possibility that the rapid discrimination of invisible
fearful faces in the amygdala arises from neural activities in EVA,
FG, or PHG.

Discussion

Subcortical sensory pathways have been suggested to be suffi-
cient for rapid and unconscious processing of ecologically
important stimuli, but direct electrophysiological support is
lacking. Here, we reported intracranial ERP evidence that the
human amygdala could selectively process invisible fearful
faces containing only low spatial frequency information at an
early latency of ~88ms. Time-frequency analyses further
identified that the rapid fear detection in the amygdala was
associated with increased power at the low gamma frequency
band. Critically, such early fear-selective responses were absent
in cortical areas along the ventral visual pathway, excluding their
contribution to the amygdala response. These findings strongly
support the low-road model suggesting that threat information
can be transmitted through a subcortical magnocellular route to
the amygdala independent of the cortical pathways in humans.
Controversies remain over the response latency of the amyg-
dala to fear. Although rapid amygdala responses to visible fearful
or threatening stimuli have been reported within 100 ms after
stimulus onset in magnetoencephalogram (MEG) studies
(Luo et al., 2007, 2009, 2010; Bayle et al., 2009; Maratos et
al., 2009; Hung et al., 2010; McFadyen et al., 2017), single-
neuron and iEEG recordings in the monkey (Gothard et al.,



2007) and human (Oya et al., 2002; Krolak-Salmon et al.,
2004; Mormann et al., 2008; Pourtois et al., 2010) amygdala
mostly reported responses at a latency later than 100 ms.
Potentially benefiting from the use of a larger sample size
and more recording trials, an earlier human iEEG study found
a faster amygdala response to fearful than to happy and neu-
tral faces at 74 ms after stimulus onset (Méndez-Bértolo et al.,
2016). The 88 ms effect latency to LSF fearful faces in our
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