BRIEF REPORT

The rhythm aftereffect induced by adaptation to the decelerating rhythm

Baolin Li¹ · Kun Wang¹ · Lihan Chen²

Accepted: 16 September 2021 © The Psychonomic Society, Inc. 2021

Abstract

Introduction

e ce ,, , ac,, , c , , , , e, c.

A, , , , e ec , , ca, , , , a ce, f acc a, e , , , , , b, (e.g., f ea, g, d,,, g a ca, a d, a, g, e a), eba, e d de e e ce, ed, e (Eagle a , 2008). A $\mathcal{L}_{\bullet}^{\mathfrak{A}}$, e , e ce \mathcal{L}_{\bullet} , a , able e a lie, file q a e e e e li li e e e e li al ada la. E e a ... te, af, e ada .a. . a eta... et fa . a d. . a, bere, deae, fa, ad, a, ece, ed a be Lee, ide afe ada and a elam el , ad, . , e a e deaead, . a ea fa e (Bec e & Ra / e , 2007; Le , a , Ba , & W, a e, 2018). T, e a, e af e effec, , , , a \mathbf{a} , $\mathbf{e} \mathbf{d} \mathbf{a}$, \mathbf{a} , \mathbf{e} effect, \mathbf{e} , \mathbf{c} , \mathbf{e} , \mathbf{a} , \mathbf{a} , \mathbf{d} , \mathbf{a} , \mathbf{a} e,a,,, e, , , , & e , _ e e , _ , , d,e & e , , , , e, e e ce, ed d a,..., fa b e e, e e, (He, e, a,.., 2012; L, Y, a, & H, a , 2015; Wa, e, I, , & G d, 1981). Si de a efi d, a, b, , e _, a d, ed aafeeffec, co, , , , , a d, , , a d, , c, b, a e e _ _ - ecfc, a d | eda , d , e ada , d , a d d a, (Bec e & Ra e, 2007; He, e, a, 2012; L

Published online: 04 October 2021

a, in be finee, efed far aread inceee, ach constant

[⊠] Ba , L ,b, .@ .ed .c

Sc., fP.c., g, S aa., N a, U , e , , , 199 C a g'a S., R ad, Ya a D , , c, , X'a 710062, C, a

Sc., fP.c., a ca, a d C $\frac{Q}{2}$ in e Sq e ce a d Be, $\frac{Q}{2}$ Ke Lab a, fBe a, a d Me, a, Hea, Pe, $\frac{Q}{2}$ U in e i..., Be, $\frac{Q}{2}$ 100871, C, a

e, a., 2015; M, a.a.e, a., 2018). Tee de de a, a, , e a , a ef, a , fedada, a, eca, .T, dea a bee fine in ed b a ece indicate diagram and a a fine a each fine in the fine in the fine and a fine a fine in the fine i e ced, e e ce, ed d a, fa, te e fued, e-, a, (M ,a,a, He , , McG a , R ac , & W , a e , 2020). Hee, a bd, fe, de ce de, a, ee ae e a a e eca, f d a, a d . e ce, (J , A, d, & N, da, 2006; Pa, ada, & Ea, e a,2007). F e a . .e., Pa .. ada, a d Ea ... e a (2007) a e fa ddbau, a le ce, ed la la e, ee, lee , e e ce, ed a e f a a d bee bee a f, c e a c a $^{\circ}$ ed b e ddbau a . M e e e , fMRI d e a ef, dd, c, e a, b, a, e, fd a, ba ed a d bea, -ba ed , , \(\frac{9}{6} \) (G1 be, C \(\text{e} \) e , C \(\text{e} \) e , & G \(\text{ff} \) , 2010; Te, G, be, K, a, & G, ff, , 2011). H, eb a ce e, e, , f a, , , e, e, , , u deba, ed. U, e, e, $\overset{\boldsymbol{q}}{\boldsymbol{\zeta}}$, e, d, $\overset{\boldsymbol{q}}{\boldsymbol{\zeta}}$, a, , a, , , a, a, c, ed f. e, f e e a,, e, a, . We . . , e ce, e, e a, e, f , e _, , h , a, , e,e _, c a $\frac{v}{2}$ e , f, e _, ,_ ,c c , a e tace, e ,, a d ta a c ,, cat , i.e., i.e., e.e., a.e., a.e a a e , de a , fa e , e e , (B, e, , Lecce, & D , cc , 2012; H & D I ca, 2015; Ma, e , 2011, 2013

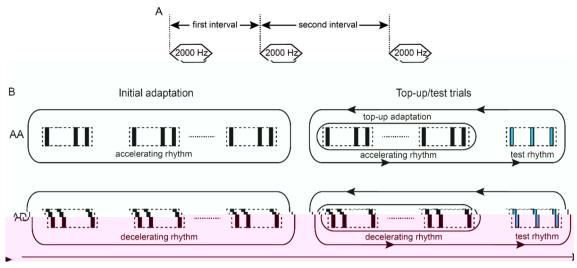
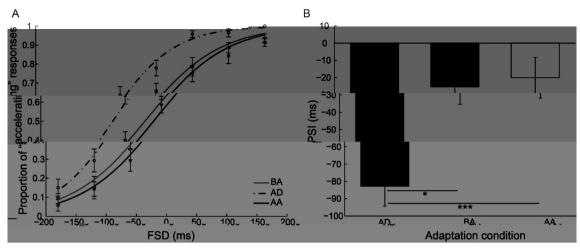


Fig. 1 (A) Sc e a_0 c d a_0^{g} a f, e a_1 d g , f, e a_1 d g , f, e g d g a g d g e g e ce. (B) Sc e g d g ,

ada . . dece e a, $\frac{Q}{a}$. .), eac . f. ,c be a e, ,, a, ada - ,a,. . a e f μ . ed b . . . $\frac{1}{a}$. /e . . , a,

clear, accele a, $\frac{q}{s}$ (f., /ec. d., e. al.: 710/310). dece,e a, $\frac{1}{2}$ (f, /ec d, e, a,: 310/710) ada , $\frac{1}{2}$ a e ea ed 80, e _ , a , e - _ , e, a, (IRI), f 1,500–2,000 ($\mathbb{F}_{\bullet}^{\mathfrak{A}}$. 1B). \mathbb{F}_{\bullet} , e ea ada $\mathbb{F}_{\bullet}^{\mathfrak{A}}$ fere c _ a ab_, 1.08 H . I eac ____/e, , a,, e, f e e ,e, (f , / eq d, e, a; 420/600, 450/570, 480/540, 510/510, 540/480, 570/450, a d 600/420) a e e e ed , a, ee, e a ea , e ada , 🖁 a e e e e e ed. Afe, e e, e, e d a ea ed, a ca a e e a ed a d ca e e, e, e, e, e, ... a accete a, 🖫 decete a, 🖺 b e , 🛂 e f ... , abe,ed e ... a QWERTY e b a d (, e"F" a d"J" e _ e e e ed). T e e _ e a c, e bata ced ac. a, g, a, D, g, e e, e b, c, a, c, a, e e a ed, a e a, e f, a, e c ee. Tec, f, ef.a, a a, a b, ee ce, d, b, e ad, e,e, ... Te c, a,e a b, e (500–750) – ed (500) – b, e (500–750) d , , , , e, d, T , _ a , e , d a , c -.a, ,a, e e, e,e, d., , , d be € , ,, .T e e _ e e ,__ ada , a,__ c d,,__ : "ada , __ acce,e a, 🐫 " (AA) a d "ada , decede a, (AD). T_{\bullet} , f eac ada, a, c, d, , a, c, a, c, e, e, ed ... b, c f 35, e, , a, ... f, e, a, f eac, f, e, e, B, e de f, a, e eac b, c a d, e de f b, c e e e, ec, ed a d . Af, e eac b, c, a, c, a, a b ea , f a, tea , 3 , . . . a , . , e , a, ca . -, e effec, be, ee b, c . M e, e, a ba e, e (BA) e f a ce_a c uec ed bef e, e ada a, b, c . T a, , .a, c, a, c, ..., e, ed a, e, e, b, c, f70, , a, ,_ , c _ e e b_{1} b_{2} c_{1} e_{2} e_{3} e_{4} e_{5} e_{5 ada, a, a e a d a a da, a, e, d. T e, a, e e, e, a, ed a ..., a, e, 80 ,.


Measurements

I E e_1 e f, f each a f each, e f "accete a_0 \S " e_1 , e_2 , e_3 , e_4 , e_5 , e_5 a , ed a a f c, f, e d ffe e ce be, ee f, a d ec d, e, a, (FSD: 0, 60, 120, 180) a d f, ed., a ${}_{L}^{Q}$, ${}_{L}^{Q}$ of ${}_{L}^{Q}$. ${}_{L}^{Q}$. c e d . e , , , f b ec, e , c , , 50% e., e.e., e.c., e.c., of c.,) a d ... i, de a e, a, e, f, e, d, c, a, e, d (DT; a ..., a, e, a, f, e, ff e, be, ee, e 27% a d 73% ee de ed). T e PSI efe , e edan e , e eSD . ee.a,,c,a, . eee $_{f r}$ a,, , e, , c,a, $_{f r}$, e,e, a "accele a, §". "decele a, §." T e DT. a , a e a a ear e, f. a, c, a, 'e inic a, d \ \ , e d ecf,e, ca e. Te PSI a d DT, a e e e, b,a ed f au beie i au fiec di , a deea az ed ... e e ea ed- ea 🗗 e a a, , , f, a, a ce (ANOVA), e ec,,, e, B, fe, ,,,, c,e, e e, ed, f, e ANOVA a fish fca. Mere, eare, e.b., e f, a, , ca, c a, , , e c , ed, e 95% c fde ce, e, a, (CI) f eac c a, , , , a, , a, , ced e ba ed. 1,000, e a, . Au, e, . e e, . -, a ed.

Results and discussion

A e ea ed- ea e ANOVA e PSI ed a e a effec f ada a a a effec f ada a a a f f ca (F(2, 26) = 10.591, < 0.001, 2 = 0.449; F_s^Q . 2B a d S2A). B fe a c e de a ed a e PSI e AD c d a a g f ca a a e PSI a e AA (< 0.001, C e ' = -1.409; 95% CI [-85.31, -42.40], = 0.001) a d BA (= 0.017, C e ' = -

c d., (BA: ba e, e__, , , ada , a, ; AA: ada , acce, e a, $\frac{q}{q}$; AD: ada , dece, e a, $\frac{q}{q}$). (B) P, , , f , b ec, i e, , c (PSI), e, e e e c d., E, ba e e e e, a da d e , eac c d., .* < 0.05, *** < 0.001

0.881; 95% CI [-90.55, -26.83], = 0.021) c d ...

H e e , e e a ...

g f ca d ffe e ce ...

e e AA a d BA c d ...

(= 1.000, C e ' = 0.091; 95% CI [-24.42, 31.92], = 0.755). M e e e , e e a effec f ada a ...

a effec f ada a ...

a e ffec f ada a ...

d c ...

d c ...

d c ...

d c ...

g f ca (F(2, 26) = 1.835, = 0.180, 2 = 0.124), c ...

g f ca (F(2, 26) = 1.835, = 0.180, 2 = 0.124), c ...

g f ca (F(2, 26) = 1.835, e ...

g f ca (F(2, 26) = 1.835, e ...

g f ca (F(2, 26) = 1.835, e ...

g f ca (F(2, 26) = 1.835, e ...

g f ca (F(2, 26) = 1.835, e ...

g f ca (F(2, 26) = 1.835, e ...

g f ca (F(2, 26) = 1.835, e ...

g f ca (F(2, 26) = 1.835, e ...

g f ca (F(2, 26) = 1.835, e ...

g f ca (F(2, 26) = 1.835, e ...

g f ca (F(2, 26) = 1.835, e ...

g f ca (F(2, 26) = 1.835, e ...

g f ca (F(2, 26) = 1.835, e ...

g f ca (F(2, 26) = 1.835, e ...

g f ca (F(2, 26) = 1.835, e ...

g f ca (F(2, 26) = 1.835, e ...

g f ca (F(2, 26) = 1.835, e ...

g f ca (F(2, 26) = 1.835, e ...

g f ca (F(2, 26) = 1.835, e ...

g f ca (F(2, 26) = 1.835, e ...

g f ca (F(2, 26) = 1.835, e ...

g f ca (F(2, 26) = 1.835, e ...

g f ca (F(2, 26) = 1.835, e ...

g f ca (F(2, 26) = 1.835, e ...

g f ca (F(2, 26) = 1.835, e ...

g f ca (F(2, 26) = 1.835, e ...

g f ca (F(2, 26) = 1.835, e ...

g f ca (F(2, 26) = 1.835, e ...

g f ca (F(2, 26) = 1.835, e ...

g f ca (F(2, 26) = 1.835, e ...

g f ca (F(2, 26) = 1.835, e ...

g f ca (F(2, 26) = 1.835, e ...

g f ca (F(2, 26) = 1.835, e ...

g f ca (F(2, 26) = 1.835, e ...

g f ca (F(2, 26) = 1.835, e ...

g f ca (F(2, 26) = 1.835, e ...

g f ca (F(2, 26) = 1.835, e ...

g f ca (F(2, 26) = 1.835, e ...

g f ca (F(2, 26) = 1.835, e ...

g f ca (F(2, 26) = 1.835, e ...

g f ca (F(2, 26) = 1.835, e ...

g f ca (F(2, 26) = 1.835, e ...

g f ca (F(2, 26) = 1.835, e ...

g f ca (F(2, 26) = 1.835, e ...

g f ca (F(2, 26) = 1.835, e ...

g f ca (F(2, 26) = 1.835, e ...

g f ca (F(2, 26) = 1.835, e ...

g f ca (F(2, 26) = 1.835, e ...

g f ca (F(2, 26) = 1.835, e ...

g f ca (F(2, 26) = 1.835, e ...

Experiment 2

Method

Participants

Shee har ee (e fe a,e; ea age: 18.4 0.7 ea)

a a g a, ed, E e, e 2. T e e e a, e, e e e e

f, e e e, e, Aubin e, f, e a a g a lee e

a deda d, e ad a c ec ed-la au a d

a ea, g. Au f, e la deda f ed e bef e

e e e, e, a d e e a d f e e e

Apparatus, stimuli, and procedure

Measurements

Te..., f", c..." e... e... e.e... e.e... f eac c d... f eac a a c a ... a a ... ed a a f c... f, e FSD a d f... e... a Ga ... a f c... (F $^{\alpha}$.3A): = $\frac{-(-)^2}{2^2}$, ee ... e FSD c e... d $^{\alpha}$... e... f bec... e... c... (PSI; e ea ... f e Ga ... a d ... b ...) a d ... de a e... a e... f e Ga ... a f c...). He e, e PSI e fe ... e e... e FSD ... e e ... e FSD ... e e ... e ... a ... e ... be e ce. ed a ... c ... , a d ... e DT ... a a e a a ea ea e f a ... c ... , a d ... e ... d ... e ... e PSI a d DT ... a e e ... ba ed f au b e e ... a ... f ... e C d ...

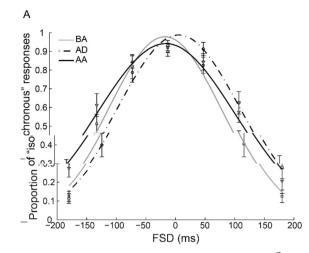
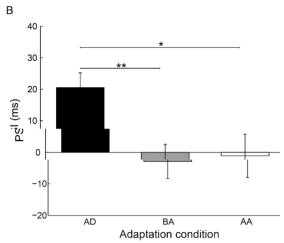



Fig. 3 Req., $f \to e_1 e_2$. (A) P. c., $e_1 c f c_2$. (a e a ded ac. $e_2 = e_3 c_4$. (a e a ded ac. $e_3 = e_4$. (b) $e_4 = e_4$. (a e a ded ac. $e_4 = e_4$. (b) $e_5 = e_4$. (c) $e_5 = e_4$. (c) $e_5 = e_4$. (c) $e_5 = e_4$. (d) $e_5 = e_4$. (e) $e_5 = e_4$. (f) $e_5 = e_4$.

Results and discussion

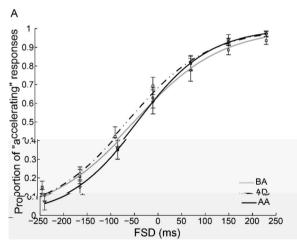
A, E, e, e, 1, a e ea ed ea e ANOVA a e e f ed, e PSI (\mathbb{F}_{\bullet}^{g} . 3B a d S2B). T e a effec, f ada , a, a is if ca , $(F(2, 30) = 8.063, = 0.002,^2 =$ 0.350). Sec f cau, , e PSI, e AD c d . a . f . f-, ca, $\mu a^{\frac{Q}{2}}e$, a, e PSI, AA (= 0.031, C, e' 0.732; 95% CI [7.27, 35.14], = 0.018) a d BA (= 0.004, C e' = 0.980; 95% CI [12.66, 34.57], = 0.003) c d-.H. e.e., ee.a., fca, dffeece, e PSI be, ee , e AA a d BA c d ... (= 1.000, C = 0.074; 95% CI [-9.78, 12.99], = 0.771). We $a_{i,j}$ $f_{i,j}$ $d_{i,j}$ $a_{i,j}$ e $a_{i,j}$ e $DT_{i,j}$ $a_{i,j}$ F(2, 30) = 8.356, F(2, 30) = 8.356, F(2, 30) = 8.358. T a, , , eDT, , eAAc d, a is fca, a ge, a, a e BA c d ... (= 0.004, C e' = 0.985; 95% CI[10.27, 31.67], = 0.002). H e.e., e.e. e.e. $\frac{1}{2}$ if ca, d ffe e ce, eDT be, ee, eAAadADcd, = 0.130, C e' = 0.552; 95% CI [1.55, 20.63], = 0.059),a d be, ee , e AD a d BA c $d_{\mu\nu}$ (= 0.195, C e ' = 0.498; 95% CI [0.36, 23.37], = 0.100). T e e e e . ,, de fi, e e, de ce, f, e af, e effec, e, l, f a_1, a_2, \dots, e_n decede a_1, a_2, \dots, a_n ender a_n, a_n ender a_n ender a_n e ce , , , e e, a, e , a , a dec, , a, ,e e,.

Experiment 3

Method

Participants

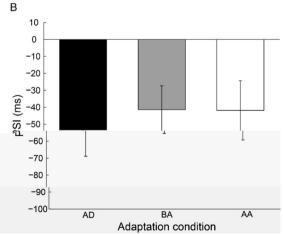
Apparatus, stimuli, and procedure


Tealaal, , , , , , ad., ced e, fE, e, e, 3. ee e_i de e_i e e_i e e_i e e_i e e_i e e_i Te,e, _ e e e e e,ed, , au . S ec, f cau, , , e,e, _, _ e e c _, ed, fa, \(\frac{q}{2}, \text{e}__ \), e d c (0.8) 0.8, 20), a, b, ed, a d, ff, ee, e a d, a , ca, ed a, 0.8 , f , e, e , f , e ce , a, f , a, c . S ce de a e $\mathfrak{g}_{\mathfrak{g}}$ e ed e fe $\mathfrak{g}_{\mathfrak{g}}$ a. ($\mathfrak{g}_{\mathfrak{g}}$ d $\mathfrak{g}_{\mathfrak{g}}$ ef a ce, e, a, ce, (G, d, e & La, , 1972, 1974; G. d., Me $\mu \phi$ -We μ , Q. eue, e, & Maca , 1998; U,, c, N, c, e, & Ra a e, 2006), a, c, e dffc., f, e,,, a, ., ece,, , , e a d, . ece, , e, e, ed e e ,, a, e, ... (f ,/ ec d, e, a,: 400/640, 440/600, 480/560, 520/520, 560/ 160, 240), a , e, E e, e, 1 a d 2. Au, , a,

1,600 1,200 $= e_1$ $= e_2$ $= e_3$ $= e_4$ $= e_4$

Measurements

Results and discussion


Tee, f, e e ea ed- ea e ANOVA ... ed, a , e e e e e , f ca , a effec, f ada a, , , e PSI $(F(2, 26) = 0.304, = 0.740, ^2 = 0.023; F_{\bullet}^{\circ} . 4B \text{ a d}$ S2C) a d DT (F(2, 26) = 0.991, = 0.385, $^2 = 0.071$). T ,e, e, e, e, e, ac, f, e ada, a, effec, a de, e , , , a, _ , e,f, e, f, e, e, e, a, ed, e _ , afe effec..., e, , a, , da, , a c , , e e, e, (ee, eO, e \S) , e e, a. Ma, e, a, (OSM) f de, a,). T e e, , e, , e, , a, . , d- \mathbf{a} , \mathbf{a} , \mathbf{e} ce \mathbf{a} , $\mathbf{E}^{\mathbf{x}}$, $\mathbf{S1}$, \mathbf{OSM}). Mere, ac ac e.e. e. e. ed, a, e af, e effec, _ 1, 1, e 1, 1 at _ da, _ (c , _ 1, e . e . e,)_a c, a able_, a,_,,, e a d,__, da,_ e ce , , e,f. T e e e, , de , , a, ed , a, , e ada a, effec, bere, ece, c,d,

a fe a ada ed da, , , , , , e da, e eq f q f , e af e effec.

General discussion

We be ed e afe effection ed ection for each and a Pentre each a Pentre e

eac c d_{ab} (BA: ba e, e. , , , ada , a, ; AA: ada , accete a, , accete a, ; AD: ada , decete a, , accete a,). (B) P, , , , f $_{ab}$ b ec, $_{ab}$ e c , , (PSI), e, e, ee c $_{ab}$. E ba e e e , a da d e , eac c $_{ab}$

e ed f, g a, e, f, e ada, ed e e e b, e f c d g fa (, e), e a, d a, (Bec e & Ra e, e, 2007). T, dea, de, ca, e d a, c a e, ba ed de, (He e a, 2012), a d c e b ec d d a, e e e e e e e fa a, (Ca eda e a, 1994; D e e a, 1996; Fa e e a, 2003) a d a be g (Ha, e e a, 2020; Ha a e a, 2019). F e e ec, e e ec, e

Supplementary Information T e, $a_1e_1e_2$, $e_2e_3e_4$, e_3e_4 , e_4e_5 , e_5e_5 , e_5e_6 , e_6e_6

Funding T , . . . a , . . . , ed b , e Na, . a, Na, a, Sc e ce E , da, . . , f C , a (G a , be 32000744, 31671125) a d F da e ,a, Re ea c F d f , e Ce ,a, U , e ,, e (G a , be GK202003095).

Declarations

Conflict of interest $T = a_1$, $dec_4 = c_1 \cdot e_4 \cdot \frac{q}{2} \cdot f_1 = c_1 \cdot a_4$, $e = c_1 \cdot c_2 \cdot e_4 \cdot e_5 \cdot e_6$.

Ethics approval and informed consent T e $_1$ d $_2$ a $_3$ d $_4$ c, ed , acc da ce $_1$, . e $_1$, c., de $_2$ f , e Dec,a a, . , f He, . , a d $_2$ a a $_3$, ed b , e, ca, e, ,c c $_4$, ., ee, f, eS aa , N $_4$ a, U , e , $_5$ fC , a. I f $_6$ ed c $_6$ e , a , b, a ed f $_6$ a, a, d, d, a, a, c, a , c, ded, , e , d .

References

- Aua , L. G. (1977). T e , e , de e , de e , f d au . C J P , 3I(1), 24-31.

- B. e_{ab} , N., Lecce, F., & D., cc_{ab} , F. (2012). T. $e_{ab}d_{ab}$ a d_{ab} e $c_{ab}d_{ab}$ a $d_{ab}d_{ab}$ a $d_{ab}d_{ab}$ a $d_{ab}d_{ab}d_{ab}$ a $d_{ab}d_{ab$
- B a a d, D. H. (1997). T e . . . c V 10(4), 433-436.

- B_{1...}, R., & S.a., A. (1976). S. a acee, add ca $^{\mathbf{v}}$ e.a.e., f c c i.e. $^{\prime}$ cc. i.e. II. Ferec. , d i.a.ed, e. $^{\prime}$ B_{1...}, $^{\prime}$ 39(1), 179-194.
- Ca eda, J., E., c., D., & C., e., E. (1994). No. a, ..., ..., f. ..., d. d. a, ..., ..., e., f., ..., e., a, ..., e., fe, ..., c., ..., s. ..., 264(5160), 847-850.
- Defection e, J., Sc aaf a, S., & O ba , G. (1996). Concat, if each e $\frac{g}{g}$ for the day $\frac{g}{g}$ of $\frac{g}{g}$, $\frac{g}{g}$ for $\frac{g}{g}$ and $\frac{g}{g}$ for $\frac{g}{g}$ and $\frac{g}{g}$ for $\frac{g}{g}$ and $\frac{g}{g}$ for $\frac{g}{g}$ for $\frac{g}{g}$ and $\frac{g}{g}$ for $\frac{g}{g}$ f
- Far e, P. A., Fe , T., Ca eda, J. H., & C., e, E. (2003).

 Te , a, a, y e ea, , e, e, f, d-e, ed, b, e
- F a e, P. (1982). R . . . a d e . . . I D. De c (Ed.), T P M (. . 149–180). Ne Y , NY: Acade C P e .
- G d e, S., & L a , W. T. (1972). At d 1 1 1 1 at d ffe e ce , a t d e . P M S , 34(2), 623-633
- G. d., S., Me up -Weu, G., Q. ene, e, C., & Maca, F. (1998). Se effec, de e, f , e, e, e, a, . P R , 61(4), 261-268.
- Gribe, M., C., e, F. E., C., e, P. F., & Griff, T. D. (2010).

 D., ga, fighta, baed a dibea-baed and control of the ce ebea degree e a., P. R. N. A.

 S. N. A. 107(25), 11597-11601.
- $G = \{a, S, E, G, \ldots, L, A, \& B, a, e, R, (2005), Hea, \frac{q}{s}, a, ee e e ee: a d, e e c d, f, a a, e, e, a, e, e e e e. P$ $S = \{16(3), 228-235\}$
- Ha a , , M. J., & I , , R. B. (2020). D a_{i.} e_{i.} e_{i.} e_{i.} e_{i.} $\frac{q}{s}$, a , e, a_{i.} c , e ef_{i.} e e_{i.} b ec_{i.} e e . e , e ce_{i.} f , e. J N , 40(40), 7749-7758.
- He, , , & Ra a e , T. H. (2015). T, e- de e , a d , a da d- , effec, d a, d c , , a, :a e , e , e , a, d a d a d a a a, b , e e a, e , d e, A , P , & P , 77(7), 2409-2423.
- He, J., Aae -S. c date, C., H., c , J., R ac , N. W., McG a , P. V., & W., a e , D. (2012). Drad. c a et ed ate r a , e e ce a. . P R S B: B S , 279(1729), 690-698.
- H , N. K., & D. L. ca, M. (2015). Fig. $\frac{Q}{2}$, e b.a , e a., e a., e a.; e ... e f f.u, $\frac{Q}{2}$, free ce e ce, ed dra, a d d c, a a... e f a ce. F P , 6, 114.
- J., A., A., A., A., L., D. H., & N., L., da, S. (2006). S. a., a., L., cast. ed. d., L., f. e., C. B., 16(5), 472-479.
- Kay, N., & Cadaeaa, B. (2010). My , c, a, & f, edee, e, fayd, ..., N. R. N. , 11(8), 599-605.

- L, B., X a, L., Y, , H., L, P., & H, a $\stackrel{q}{}$, X. (2017) D a, affective de e d , e d a, f ada , a, . F P , 8, 491
- L, B., Y, a, X., & H, a $\stackrel{X}{\circ}$, X. (2015). The affelding free constants are also as S = R = -5, 10124.
- Ma, e, W. J. (2011). H. d c a $\frac{q}{2}$ e, end affect energy of $\frac{1}{2}$ d a₁, $\frac{q}{2}$ $\frac{1}{2}$ $\frac{$
- Ma, e, W. J. (2013). H. d. e e e e e ce de a effect e de e .

 f., e? E. ., g. a. eg. ed. . f. eg. e . . de. C

 P. . 66, 259-283.
- M , u , B., Sc , ede , C. E., W. a , V., & A a, L. H. (2016). Te , a, ed c, , , eq , f e, d c , , , , a, . . J N , 36(8), 2342-2347.
- N , 36(8), 2342-2347.

 M , a,a, A., He, , J., McG a , P. V., R ac , N. W., & W , a e , D. (2018). Ra, e af, e -effec , fa , , , a fe c, , da,, : e , de ce f d , b , ed e , . . . , s , 924.
- M. a,a, A., He., J., McG a., P. V., R. ac., N. W., & W., a. e., D. (2020). Te. ω a, a, e., ω , a. d. a. c, ω e. a. ω e., c. S R , $I\theta$, 8654.
- Parada, , V., & Eagle a , D. (2007). The effect of edicable because deal and P are dealers.
- P. L. a a, F., Ha a 1, M. J., K. a e a, S., a de Z aag, W., Ba, a eaa, G., M. a, M. M., . . . Brea, D. (2019). C a ea. *PL S B* , 17(3), e3000026.
- Sada a, a, M., De a , P., & H , $\frac{Q}{2}$, H. (2006). T e Ba e a _ a _ e,a, e _ . . . e ce _ . . a d . . ϕ c_a. . M P , 23(3), 269-288.
- Sc e de , K. A., & K , , M. (2008). A, e , , h a e deq , , d e , , a, e a ea a ce. J V , δ (15), 3, 1-10.

- S , a, S., M, a , Y., Ha , , , , , Y., & Y., , , , , Y. (2016). D a, ada , a, , , co ac , , e , b a d , , a ec d , e . F P , 7, 114.
- Ta i , , K. (2001). Af e effec, f ada , a, . . , i , -d ec, . a, f e i e c c a i e: e , de ce f e, ec, i e c a , . . A , 22(1), 49-51.
- Te₁, S., G₁ be, M., K₁ a, S., & G₁ ff. , T. D. (2011). D₁ a, c₁ e a₁ b₁ a, e f d₁ a₂ -ba ed a d bea, -ba ed a d d₂ 1 f $\frac{Q}{2}$.

 J N , 31(10), 3805-3812.
- T, a , B., & Ray c ec e , J. P. (1994). P, ce , q, f f e y e c , dy a, ed , y e ca' a , e, y a d, y f e, d. J

 N , 71(5), 1959-1975.
- Va. ecc., M., Ve c., M., & T. a., M. (2010). A e. e effec. f a. e. eed de e. ge., e. e ce. a.? A, P, & P, 72(3), 637-650.
- Wa, e, J. T., I, , A. L., & G, d, , D. G. (1981). S Let a d C $_{\rm a}$ = $_{\rm c}$ e, after effect of e cented d $_{\rm c}$ a, $_{\rm c}$ and a d $_{\rm c}$ d $_{\rm c}$. $_{\rm c}$ $_{\rm c}$
- Z a $\stackrel{Q}{,}$ H., C e , L., & Z , I , X. (2012). Ada , a, , , , , , a, a, a, a, d, ... at d, ... e, , e, a, , , d, ae , e e e e a, , , , f, , , a, a , a e , , , ... F I N , 6, 100.

