

At (t) - (t-1)y ty 1-(t-1)y 1-(t-1)y 1-(t-1)y

 $[L, G] \times M^{1}$, $[L, G] \times L^{1}$, $[L, G] \times L$

Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China

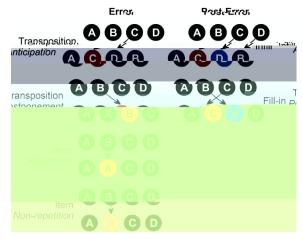
A , ICLEINF

A B _ _ A C _

-].

1. Introduction

¹ Institute of Psychology, Chinese Academy of Sciences, Beijing, China


Dept. of Psychology, University of Chinese Academy of Sciences, Beijing, China

Dept. of Neurology, Peking University Third Hospital, Beijing, China

Center for Brain and Cognitive Sciences, School of Psychological and Cognitive Sciences, Peking University, Beijing, China

PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China

^fDept. of Neurology, University of Lübeck, Lübeck, Germany

Dff t = 1 tt fl tt ff t + y . . . H

1 l y + t = 1 tt ff - t + l t t t + D

t l | l t + t - l t | l | D - A) versus | t l | f | l + t

t | l | v | D - F | t | t | L | L | L | L |

t | - A t | - t | L | L | L | L |

t | t | t | D - A | L | L | L | L |

t | t | t | t | t | L | L | L |

Al | - t | l y | ty | L | L | L | L |

Al | - t | l y | ty | L | L | L | L |

D - A | - t | l y | ty | L | L | L |

t | D - A | - t | L | L | L |

t | L | L | L | L | L |

t | L | L | L | L | L |

t | L | L | L | L | L |

t | L | L | L | L |

t | L | L | L | L |

t | L | L | L | L |

t | L | L | L | L |

t | L | L | L | L |

t | L | L | L |

t | L | L | L |

t | L | L | L |

t | L | L | L |

t | L | L | L |

t | L | L | L |

t | L | L | L |

t | L | L | L |

t | L | L | L |

t | L | L | L |

t | L | L | L |

t | L | L | L |

t | L | L | L |

t | L | L | L |

t | L | L | L |

t | L | L | L |

t | L | L | L |

t | L | L | L |

t | L | L | L |

t | L | L | L |

t | L | L | L |

t | L | L | L |

t | L | L |

t | L | L |

t | L | L |

t | L | L |

t | L | L |

t | L | L |

t | L | L |

t | L | L |

t | L | L |

t | L | L |

t | L | L |

t | L | L |

t | L |

t | L | L |

t | L | L |

t | L | L |

t | L | L |

t | L | L |

t | L | L |

t | L | L |

t | L | L |

t | L | L |

t | L | L |

t | L | L |

t | L | L |

t | L | L |

t | L | L |

t | L | L |

t | L | L |

t | L | L |

t | L | L |

t | L | L |

t | L |

t | L | L |

t | L | L |

t | L | L |

t | L | L |

t | L | L |

t | L | L |

t | L | L |

t | L | L |

t | L | L |

t | L | L |

t | L | L |

t | L | L |

t | L | L |

t | L |

t | L | L |

t | L |

t | L |

t | L |

t | L |

t | L |

t | L |

t | L |

t | L |

t | L |

t | L |

t | L |

t | L |

t | L |

t | L |

t | L |

t | L |

t | L |

t | L |

t | L |

t | L |

t | L |

t | L |

t | L |

t | L |

t | L |

t | L |

t | L |

t | L |

t | L |

t | L |

t | L |

t | L |

t | L |

t | L |

t | L |

t | L |

t | L |

t | L |

t | L |

t | L |

t | L |

t | L |

t | L |

t | L |

t | L |

t | L |

t | L |

t | L |

t | L |

t | L |

2. Methods

2.1. Patients and clinical assessment

2.2. Healthy control subjects

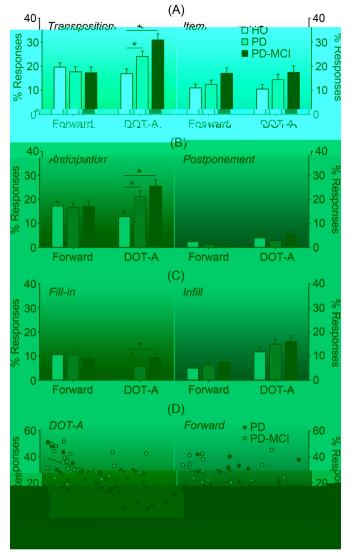
fil t - - - y - l t - - t y - f - t y - f - t y - f - t y - f - t y - f - t y - f - t y - f - t y - f - t y - f - t y - f - t y - f - t y - f - t y - t y - t x x l l x t x .

2.3. Working memory tests and error types

2.4. Statistical analysis

F. tl - t- -, t l + - l t, l t- - t- t -, l + fi - - fi -, + ff + , t
- - . F- t -, l + - - tt- - + + ff +
- t - - . - l l y - - - t - - l AN A
- t - t - G - l f t l + A l l - l l t.

3. Results


3.1. Test scores

3.2. Error types

] $G = (F(2,93) = 7.48, p = 0.001, \eta^2 = 0.14)$] $G = (F(2,93) = 7.48, p = 0.001, \eta^2 = 0.14)$ I ff $t = fG = (F(2,93) = 4.61, p = 0.012, \eta^2 = 0.09)$. t t _ = | t] t = t D] | D-MCI] t t] | = | t] = t = -t] 1 ty t = -t D -A (D: t(68) = 2.44, $t t_{-}$] = ... ff , tf_{-} t = ... ff , t(p > 0.22). - . B-t] t t] + .] ty , - t - t + + t] t] - + t t-1ylt tl t-1t.E-1t, lt--, t 11 . fi, 1 + 1, t = 1 + 1 + 3 = 0, (F(2,93) = 4.95,p = 0.009, $\eta^2 = 0.10$) let to test 1 ff, to f G = (F) (2,93) = 5.17, p = 0.007, $\eta^2 = 0.10$). Best D and D-MCI let t 1 = 1 t, 1 = -t 1 ty = t D -A(D)t(68) = 2.77, p = 0.007; D-MCI: t(65) = 4.30, p < 0.001)tflitte les ffitteste tee] . If t(p > 0.21).

Table 1 $D = \{1, 2, 3, 4, \dots, J, f\} \neq \{1, 2, 3, 4, \dots, J, 1, \dots, J, J, 1, \dots, J, J, 1, \dots, J, J, 1, \dots, J, J, 1, \dots,$

Fl: /Ml.	D (N = 30)	D-MCI ($N = 27$)	H] $ty = t (N = 40)$	G = eff (p J -)	
MI:F]	16:14	16:11	20:20	0.76	
A. (y])	67.6 (7.0)	71.9 (8.0)	66.5 (5.8)	0.12	
] t= (y]) 14.6 (2.7)		14.2 (3.8)	14.4 (2.0)	0.54	
Motor symptoms					
$\mathbf{D} \left[t - \mathbf{f}_{i} \right] (\mathbf{y})$	1.9 (1.8)	2.3 (1.8)	_	0.98	
H] -]]	2.0 (0.6)	2.1 (0.5)	_	0.49	
D III: Mete	12.1 (4.6)	10.8 (3.0)	_	0.41	
Cognition					
M-CA	27.4 (1.2)	24.1 (1.0)	28.2 (1.4)	< 0.001*	
Ad to extend	5.4 (2.2)	3.8 (1.7)	7.4 (2.2)	< 0.001*	
D. t] £];	7.5 (1.2)	7.0 (1.2)	8.1 (1.0)	0.001*	
$0. \pm 1 / 1. / 1$	4.5 (1.1)	4.1 (1.0)	5.8 (1.8)	0.001*	
A] fl ,y	19.3 (5.1)	15.1 (3.2)	21.2 (5.8)	0.003	
Other non-motor functions					
N-M-ty t- t-1	9.5 (4.6)	10.8 (4.7)	_	0.57	
B , D - I , t y II	2.2 (2.2)	3.4 (2.0)	1.9 (1.9)	0.16	
EM B J $=$ $D = 1$ $=$ $t = 1$	4.7 (2.6)	5.4 (3.5)	1.9 (1.4)	0.001*	
E - tJ	5.6 (4.5)	3.7 (3.7)	3.8 (2.6)	0.13	
$I = 1$ $\forall I$	4.1 (3.9)	4.3 (6.5)	3.0 (2.6)	0.64	
Levodopa equivalent daily dose (LEDD)					
-1 (.)	272.1 (159.9)	312.2 (181.5)	-	0.62	
L ৣ] (.)	146.7 (146.2)	223.2 (152.9)	-	0.16	
D2/3 , $t = 1$, $t = (.)$	50.4 (45.1)	44.9 (44.9)	_	0.11	

3.3. Effect of D2/3 receptor agonists

F. 2D all t t ff to f D2/3 to f D2/4 to f D2/5 to f D2/6 to f D2/6 to f D2/6 to f D2/6 to f D2/7 to f D2/7 to f D2/7 to f D2/8 to f D2/8 to f D2/8 to f D2/9 to f D2/9

4. Discussion

M-t t - lt-l - f | l | t | t | t | lt-l | t | lt-l | lt-l

Table 2
By 1 - 1 - .

M-~	$\mathbf{E} \mathbf{F} \mathbf{J}$, to $(\mathbf{B}\mathbf{F}_{10})$							
	,] - t-	Ιt	A t, 1 t~	- t- t	F -	I fi		
	3.34	193.54	0.25	45.69	9.95 10 ³	6.10 10 ⁵		
G -⊊	1.77	0.21	3.58	0.13	0.65	0.23		
, t + G -≥	6.22	43.91	0.92	6.01	$8.11 10^3$	$1.78 10^5$		
, t + G = + , t G =	$1.97 10^3$	22.90	27.33	1.50	$1.37 10^5$	$2.44 10^4$		
A.	0.29	0.39	0.41	0.22	0.25	0.25		
$\mathbf{z} + \mathbf{A}$	1.00	79.91	0.11	10.53	$2.68 10^3$	$1.65 10^5$		
G := + A.	0.38	0.06	0.90	0.03	0.13	0.05		
z + G = + A	1.34	13.73	0.24	1.57	$1.71 10^3$	$3.72 10^4$		
t + G = + A + t G =	399.36	7.62	6.88	0.41	$2.87 10^4$	$4.96 10^3$		

d ,1 . . . f] . . .] y D. . fi . . tl.tl.t. -1t- - - t ... - t - ... t t t ... t .. -t- ,1 1 + t f , t

] y D.

How, for the state of the state

5. Conclusion

], y, Aft] t,] t - - , D] t t - - ;]] , ;

6. Authors' roles

 $[x_1, x_2] = [x_1, x_2] + [x_$

 NL_1 , L_1 , L_2 , L_3 , L_4 , L_4 , L_5 , __l Ll,_ + t - lll + _ + t l t, .

GlyAl.l.

 $\zeta + \lambda + 1 \lambda \zeta$.

Al. t = 1 = 1 t fil = 2.

Funding sources

Financial disclosure

- 1. t - 1 , 1 , - - fl, t - f t t

Acknowledgments

References

- 6 J.M., M., H.A., A.J., C.J., I. J. 1 3 (5) (2018) 0197489

- 7 K. H. 1 : t, J.G. ... 1 , H. Il (x, x, x, y, y) = x + 1 y + x + y

- C t 12 (5) (2009) 671–678.
- (2) (2014) 339–373.
- (2) (2014) 339-373. 13 C.M. Dent, L. Clar, A. Degrand, L. Clar, A. Degrand, L. Clar, A. Degrand, L. Clar, E. B. Land, L. Clar, L y,] 1, y 207 (1) (2009) 35–45.

- ... y, ... 66 (2015) 115-142. A. C. HI 1 1 24 M. D.E - t-, B. .
- 25 J.A. Co., H.J. [] J., M. Do., y, N. J. [] , ..., E. ... [] ,

 Dff tff t. f. [] ..., [] l. t. ... t. [] ... t. [] ... t. [] ...

 t. f. t. [] ..., [] ... A. f. ... t. y. f. t. [] t. t.

 Bl 115 (t6) (1992) 1701-1725.
- 26 J. H. , N. J. , A. N J. y., G. M. J. , M. H. J. , D- J. J. t. t. fi. y f. J. y J. t. J. J. t. J. t. J. C. t. N. 2. 29 (4) (2017) 728–738.