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notypic variance explained by all common SNPs (SNP heritability). This
method measures the variance in the trait that is attributable to the
genetic difference across the population. The discovery and replication
cohorts were combined into one sample. We estimated the genetic rela-
tionship matrix (GRM) using all autosomal markers that were genotyped
and checked for quality control as described above (altogether 830,937).
One individual in each pair was excluded if the estimated genetic relat-
edness of that pair was �0.025 (Yang et al., 2010). Twenty-four individ-
uals were excluded and 2935 remained. We adopted the GRM-REML
(GREML) method to estimate the variance explained by common SNPs,
with the first 20 eigenvectors from PCA included as covariates. We used
an additive model because dominant effects accounted for very little of
the total genetic effects when SNP heritability analysis assumed a full
model. We used the online GCTA-GREML Power Calculator (Visscher
et al., 2014) to calculate the statistical power. We estimated genetic cor-
relations for binocular rivalry and Necker cube rivalry by bivariate
GREML implemented in GCTA.

We explored the genetic correlations between the measured pheno-
types in our Chinese population and five psychiatric disorders (bipolar
disorder, major depression, schizophrenia, autism spectrum disorder,
and attention deficit hyperactivity disorder) in a Caucasian population
by linkage disequilibrium (LD) score regression analysis (Bulik-Sullivan
et al., 2015) via the web-based LD Hub (Zheng et al., 2017). Summary
GWAS data from the discovery cohort were used as inputs. Significance
threshold was set at p � 0.0033.

Imputation. Genotypes were pre-phased into haplotypes with
SHAPEIT (Delaneau et al., 2012; Howie et al., 2012). Imputation was
then performed using IMPUTE v2.3.1 (Howie et al., 2009) based on 1000
Genomes haplotype data [Phase I integrated variant set release
(SHAPEIT2) in NCBI build 37/UCSC hg19] with 36,820,992 SNPs,
1384,273 short biallelic indels and 14,017 structural variations. Quality
control retained those variants with information (INFO) �0.4 and MAF
�0.01 for subsequent analyses, which were 7,992,300; 7,990,224; and
7,989,184 SNPs for binocular rivalry, Necker cube rivalry, and voluntary
modulation strength, respectively.

GWAS. Perceptual switching rates were taken as quantitative traits.
The first 10 PCs estimated by EIGENSTRAT were tested for phenotypic
associations using linear regression. Effects of demographic factors (sex,
age, ethnicity, and birthplace) were also tested using linear regression
with phenotypes. None of those factors showed association with p � 0.05
when all factors were included as independent variables or only a partic-
ular factor was included as an independent variable. Thus, no covariate
was included in subsequent association tests. Based on the Score Method
in the Frequentist Test framework, association tests of imputed SNPs
were performed with SNPTEST v2.5 (Marchini et al., 2007), assuming an
additive model. The full set of p values that emerged from association
analyses was loaded and visualized in Haploview v4.2 (Barrett et al.,
2005) to generate Manhattan plots. Basic statistical analyses were per-
formed, the genomic inflation factor � was calculated, and quantile–
quantile (Q–Q) plots for observed versus expected p values were
generated, all by R v3.2.1 (https://www.R-project.org). Genome-wide
significance threshold was set at (5/3) �10 �8. Regional association plots
were drawn for two mega-bases around top candidate SNPs from the
discovery GWAS by the web-based LocusZoom (http://locuszoom.
sph.umich.edu/locuszoom), only with variants that passed quality con-
trol. Quanto v1.2 was used for power calculation (Gauderman and Mor-
rison, 2006). The power of this study to discover those genome-wide
significant SNPs was �0.85 for Necker cube rivalry and its voluntary
modulation strength (with R 2 � 0.005 and MAF � 0.01), and 0.10 �
0.33 for binocular rivalry (with R 2 � 0.0002 and MAF � 0.01).

Candidate selection and replication. Genome-wide significant SNPs at
the discovery stage were selected as candidates for follow-up replication.
Genotypes of the selected SNPs were obtained from the replication co-
hort and were tested by SNPTEST v2.5 under a general linear regression
model. Candidate SNPs were functionally annotated via online tools
SNPnexus (http://snp-nexus.org) and 3DSNP (http://cbportal.org/
3dsnp/). We examined the following items in SNPnexus: copy number
variation, Ensemble-Regulatory Build, Roadmap Epigenomics, ENCODE,
genetic association of complex diseases and disorders (GAD), and non-

coding scoring method including combined annotation-dependent de-
pletion, fitness consequences of functional annotation, unsupervised
spectral approach integrating functional annotation, functional analysis
through hidden Markov models, genome-wide annotation of variants,
chromatin effects of sequence alterations, regulatory Mendelian muta-
tion, and FunSeq2. All the genomic positions reported in the main text
were based on the hg38 unless otherwise specified.

Gene-based analysis and pathway analysis. Gene-based association tests
and pathway analyses were performed by VEGAS2 (Liu et al., 2010;
Mishra and Macgregor, 2015, 2017). Approximately 21,135 genes were
tested. SNP to gene mapping was based on the hg19. VEGAS2 used SNPs
within genes or in �0.8 r 2 LD with a SNP in genes, from Southern Han
Chinese in 1000 Genomes-ASIAN. All autosomal chromosomes were
taken into consideration, while no allele frequency difference between
males and females was assumed during LD calculation. Pathway data-
bases included gene ontology (GO), KEGG, REACTOME, BIOCARTA,
and PANTHER (9734 pathways in total). Genome-wide significance
threshold was set at familywise error rate (FWER) � 0.05, which was
0.05/(21,135 � 3) � 7.9 � 10 �7 for gene-based analysis and 0.05/
(9734 � 3) � 1.71 � 10 �6 for pathway analysis. We selected the genes
and pathways with uncorrected p � 0.05 as candidates for further tests at
the replication stage. The significance thresholds for replication were
0.05/the total number of candidates.

Functional validation by structural MRI. To test the genotypic differ-
ence in brain anatomical features, we performed structural brain imaging
on a 3 Tesla Discovery MR750 whole-body MAGNETOM scanner (GE
Healthcare) in the MRI Center at Peking University. Head movement
was restricted with padding. Three-dimensional T1-weighted high-
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yses in regulating brain structural features involved in perceptual
rivalry.

The GREML method estimates SNP heritability with assump-
tions different from those in twin studies. Our results showed
that, �25% of the phenotypic variance in spontaneous percep-
tual rivalry could be explained by common SNPs. The estimates
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modulation. In this regard, it is noteworthy that Hunt and Guil-
ford (1933) reported the difference between Necker cube switch-
ing rates in bipolar versus control subjects was even greater when
subjects were instructed to slow down the perceptual reversal
(i.e., the opposite of our instruction). We chose to focus on the
speed up instruction to avoid possible confounding factors asso-
ciated with the slow down instruction, but future studies examining
the genetics underlying voluntary modulation of perceptual rivalry
could assess the slow down process. A fifth limitation is that
VOLUNTARY phenotype shows no SNP heritability but has
genome-wide significant threshold SNPs. The reason for this co-
nundrum could be due to the relatively small sample size and the
low imputation INFO score for genome-wide significant SNPs
that might smear associations and result in no consolidated peaks
(Fig. 4). Future investigation on the heritability of VOLUNTARY
is needed.

Perceptual rivalry has been implicated as a potential endophe-
notype for bipolar disorder (Pettigrew and Miller, 1998; Ngo et
al., 2011; Vierck et al., 2013). Several genes associated with per-
ceptual rivalry in our study are suggested to be associated with
bipolar disorder by literature, such as BR-related gene NFE2L2
(Rizak et al., 2014) and NC-related gene SRI (Beasley et al., 2006),
which further supports the relationship between perceptual ri-
valry and bipolar disorder. Investigation of the genetics of per-
ceptual rivalry may contribute to our understanding of molecular
mechanisms underlying psychiatric disorders. Deficits in volun-
tary control were found in many psychological disorders such as
bipolar disorder (
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