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Perceptual learning refers to improved perceptual
performance after intensive training and was initially
suggested to reflect long-term plasticity in early visual
cortex. Recent behavioral and neurophysiological
evidence further suggested that the plasticity in brain
regions related to decision making could also contribute
to the observed training effects. However, how
perceptual learning modulates the responses of decision-
related regions in the human brain remains largely
unknown. In the present study, we combined
psychophysics and functional magnetic resonance
imaging (fMRI), and adopted a model-based approach to
investigate this issue. We trained participants on a
motion direction discrimination task and fitted their
behavioral data using the linear ballistic accumulator
model. The results from model fitting showed that
behavioral improvement could be well explained by a
specific improvement in sensory information
accumulation. A critical model parameter, the drift rate
of the information accumulation, was correlated with
the fMRI responses derived from three spatial
independent components: ventral premotor cortex
(PMv), supplementary eye field (SEF), and the fronto-
parietal network, including intraparietal sulcus (IPS) and
frontal eye field (FEF). In this decision network, we found
that the behavioral training effects were accompanied by
signal enhancement specific to trained direction in PMv
and FEF. Further, we also found direction-specific signal
reduction in sensory areas (V3A and MTþ), as well as the
strengthened effective connectivity from V3A to PMv
and from IPS to FEF. These findings provide evidence for
the learning-induced decision refinement after
perceptual learning and the brain regions that are
involved in this process.

Introduction

Training can induce behavioral improvements in
perceptual sensitivity (Gilbert, Sigman, & Crist, 2001;
Sagi & Tanne, 1994; Sasaki, Nanez, & Watanabe, 2010;
Shibata, Sagi, & Watanabe, 2014; Watanabe & Sasaki,
2015). However, the underlying neural mechanism of
this training effect remains highly controversial. Early
psychophysical studies proposed a sensory modifica-
tion hypothesis and showed that the enhanced percep-
tual performance is mostly specific to the trained
location, feature, or eye, indicating plastic changes in
the early sensory cortices (Ahissar & Hochstein, 1997;
Ball & Sekuler, 1987; Fahle, 1997; Fahle & Morgan,
1996; Fiorentini & Berardi, 1980; Karni & Sagi, 1991).
Later psychophysical studies, on the other hand,
provided the evidence that the specificity is not an
inherent property of perceptual learning as it can be
eliminated by a double training procedure (Xiao et al.,
2008; Zhang et al., 2010; see also Hung & Seitz, 2014;
Liang, Zhou, Fahle, & Liu, 2015a, 2015b; Zhang & Yu,

2016 for active debates on this issue). It is also
suggested that the specificity itself is also insufficient to
support the sensory modification hypothesis, concern-
ing that the specificity of perceptual learning may also
originate from the local idiosyncrasies of the retinal
image or the hierarchical structure of information flow
in the visual system (Dosher, Jeter, Liu, & Lu, 2013;
Dosher & Lu, 1998; Mollon & Danilova, 1996; Petrov,
Dosher, & Lu, 2005). The physiological and neuroim-
aging studies that directly tested the sensory modifica-
tion hypothesis yielded inconsistent results (Adab &
Vogels, 2011; Crist, Li, & Gilbert, 2001; Hua et al.,
2010; Jehee, Ling, Swisher, van Bergen, & Tong, 2012;
Shibata et al., 2012; Yan et al., 2014; Yotsumoto,
Watanabe, & Sasaki, 2008; Yu, Zhang, Qiu, & Fang,
2016). For instance, training on an orientation dis-
crimination task changed neural response profile in V1
that favored the sensory modification hypothesis
(Schoups, Vogels, Qian, & Orban, 2001), whereas
comparable learning effects in behavior were only
accompanied by weak changes in sensory areas in other
studies (e.g., Ghose, Yang, & Maunsell, 2002). Al-
though learning was found to exert larger influence on
V4 than V1, whether this change of activity was driven
by neural populations preferring the trained orientation
(T. Yang & Maunsell, 2004) or the most informative
neurons (Raiguel, Vogels, Mysore, & Orban, 2006)
remains controversial.

The inconsistency concerning the sensory modifica-
tion hypothesis raised the possibility for an alternative
explanation, which proposed that perceptual learning is
associated with the enhancement in the readout of
sensory inputs and the modification of the neural
activity in higher level decision-making areas (Dosher
et al., 2013; Dosher & Lu, 1998; Petrov et al., 2005).
This idea is evidenced by single-unit recording in
primates showing that training changes neural activity
in decision-making areas (lateral intraparietal cortex,
LIP) rather than in sensory cortex (middle temporal
area, MT; Law & Gold, 2008, 2009). Similarly,
neuroimaging studies in human (Kahnt, Grueschow,
Speck, & Haynes, 2011) showed that training changed
neural representations of the decision variables in
anterior cingulate cortex.

To reconcile these empirical findings, theoretical
models that suggested multiple mechanisms in percep-
tual learning have been proposed. For example,
Watanabe and Sasaki (2015) proposed a two-stage
model that constitutes a feature-based plasticity and a
task-based plasticity. In their model, the feature-based
plasticity represents the learning-induced changes in
sensory feature representations, while the task-based
plasticity accounts for other changes in task-related
processing. The two forms of plasticity jointly con-
tribute to the observed learning effects. More recently,
Maniglia and Seitz (2018) have proposed another
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model that emphasizes the joint contribution of
different brain systems to the learning effect. These
systems range from low-level sensory representation to
higher level cognitive processing, which could be
mediated by the type of training task and individual
differences. Both models suggested the importance of
the high-level mechanisms beyond sensory processing
in perceptual learning. Perceptual decision is the
process that transfers sensory information into behav-
ioral actions. It is known to be a complex function that
is mediated by a network consisting of separate but
interacting processes (Gold & Shadlen, 2007; Heekeren,
Marrett, & Ungerleider, 2008). Therefore, fully under-
standing perceptual learning would inevitably require
the examination of the training effects on decision
process.

It is well known that perceptual decision can be
decomposed using a series of sequential sampling
models (Bogacz, Brown, Moehlis, Holmes, & Cohen,
2006; Ratcliff & McKoon, 2008). In these models, the
evidence for each response alternative is accumulated
over time, and the response is made when one of the
accumulators reaches the decision threshold. Recent
psychophysical studies in perceptual learning fitted
the decision-making models to behavioral data,
showing that training mainly improved the quality of
the sensory evidence to the decision accumulator
(Dutilh, Vandekerckhove, Tuerlinckx, & Wagen-
makers, 2009; C. C. Liu & Watanabe, 2012; Petrov,
Van Horn, & Ratcliff, 2011; Zhang & Rowe, 2014).
These investigations have made an initial attempt to
quantitatively measure the contribution of the refined
decision process to the improved perceptual sensitiv-
ity. More importantly, decomposing the behavioral
data into single trial model parameters enabled us to
localize the decision-making network in human brain
(Eichele et al., 2008; van Maanen et al., 2011) and to
systemically investigate the training effects within this
network.

In the present study, we used a linear ballistic
accumulator (LBA) model to identify the changes in
the decision process before and after training on a
motion direction discrimination task (Ball & Sekuler,
1987; Chen et al., 2015; Jia & Li, 2017). The model
assumes a linear accumulation-to-threshold process
governing the perceptual decision process (Brown &
Heathcote, 2008; Donkin, Brown, & Heathcote, 2011).
By correlating the parameter of LBA model with the
recorded functional magnetic resonance imaging
(fMRI) data, we searched for the brain network that
covaried with the decision parameters on a trial-by-trial
basis. Our results showed that, perceptual training
facilitates information accumulation of the decision
process by modifying the stimuli representation in the
sensory areas, enhancing the activity in decision areas,

and strengthening the feedforward connection between
them.

Materials and methods

Subjects

Twenty-two subjects (10 males, 12 females; age
range: 17–25 years) completed the experiment. All
participants had normal or corrected-to-normal vision
and were naı̈ve to the purpose of the experiment. All
participants gave written informed consent. The study
was approved by the local ethics committee.

Stimuli

The stimuli (dynamic random dot displays, DRDs)
were displayed on a cathode ray tube monitor (CRT,
40-cm horizontally wide; resolution, 1,024 3 768;
refresh rate, 60 Hz) in the behavioral sessions and via a
liquid crystal display (LCD) projector (48-cm hori-
zontally wide; resolution, 1,024 3 768; refresh rate, 60
Hz) during the fMRI sessions. Psychtoolbox 3.0
(Brainard, 1997; Pelli, 1997) in the MATLAB (Math-
Works, Natick, MA) environment was used to generate
and display the stimuli. Each participant viewed the
stimuli binocularly at a distance of 75 cm from the
screen.

To generate a DRD, we randomly generated a set of
dots, which was presented for one frame and replaced
by another set of dots with a constant positional offset
(Britten, Shadlen, Newsome, & Movshon, 1992). All
DRDs were presented in an invisible 108 diameter
aperture centered on the black background (;0 cd/m2).
At any one moment, 400 dots within an aperture
moved in the same direction at a speed of 48/s. The dots
that moved out of the aperture reappeared at the
opposite side of the aperture to conserve the dot
density.

Procedure

The experiment adopted a motion direction dis-
crimination task (Huang, Lu, Tjan, Zhou, & Liu, 2007)
and consisted of a pretest phase (two days), a training
phase (10 days), and a posttest phase (two days; Figure
1A). The procedure for a typical trial is shown in
Figure 1B. At the beginning of each trial, a red
reference cross was presented for 500 ms. The
orientation of the long arm of the red cross served as
the reference direction for the upcoming DRD. The
reference cross was followed by a red fixation point that
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difficult trials throughout the training (Hung & Seitz,
2014; Thompson, Tjan, & Liu, 2013). The participants
were randomly divided into two groups. Half of the
participants were trained along 458, and the other half
were trained along 1358. Auditory feedback was given
upon incorrect responses during the training. A visual
feedback of ‘‘slow down’’ or ‘‘hurry up’’ was presented
when the response time was faster than 250 ms or
slower than 1,500 ms, respectively.

The procedure of the posttest phase was identical to
the pretest phase, except for the order of the
measurements (fMRI session was ahead of behavioral
session). To note here, the main purpose of the current
study was to define the drift rate related decision
network and investigate the training effect in this
network. Therefore, we equated the stimuli by using the
same angle difference for the trained and untrained
directions both before and after training, ensuring that
the only difference across conditions was training. Task
difficulty is less likely to be a confounding factor in this
design, as previous studies using similar stimuli showed
no systematic change of BOLD signals across various
angle differences (Na, Bi, Tjan, Liu, & Fang, 2018).

fMRI data acquisition

Echo planar imaging (EPI) and T1-weighted ana-
tomical data (1 3 1 3 1 mm3) were collected from a
Siemens Trio 3T scanner with a 12-channel phase-array
coil. EPI data (gradient echo-pulse sequences) were
acquired from 33 axial slices (whole brain coverage;
repetition time: 2,000 ms; echo time: 30 ms; flip angle:
908; resolution: 3 3 3 3 3 mm3; scanning order:
interleaved increase).

Data analysis

Behavioral data analysis

The behavioral data measured inside the scanner
were analyzed. Trials with a response time (RT) less
than 250 ms or greater than 1,500 ms were removed
from the analysis to ensure that the measured RTs were
produced from a single decision process (Ratcliff &
McKoon, 2008). The removed trials were less than 5%
for 20 participants and 5%–10% for the other two
participants. A repeated measures ANOVA on dis-
crimination accuracy and RT, training group (458 vs.
1358) 3 motion direction (trained vs. untrained) 3

session (pretest vs. posttest), did not reveal any
significant effect of training group (see Supplementary
Figure S1). Therefore, the data from the two training
groups were combined for further analyses.

Single-trial LBA model

The LBA model (Figure 1C) is a simplified but
complete version of the sequential sampling model that
can be used to estimate single trial parameters (Brown
& Heathcote, 2008). For each trial, the model assumes
that the decision information for each response
alternative is accumulated by an independent accumu-
lator at a constant speed (drift rate v̂; sampled from a
normal distribution with mean value v and deviation of
the drift rate across trials, s). The decision information
is accumulated from a start point (â, sampled from a
uniform distribution U[0 a]), which represents the
response bias. A response is made when one of the
accumulators reaches the response threshold (b). The
decision caution was defined as the information needed
to be accumulated, i.e., b � a/2. The model also took
into account the time used for the sensory process
before the decision-making and the motor execution
after decision-making. The nondecision time is termed
as t0. Therefore, the reaction time of each trial can be
calculated as (b � â)/v̂þ t0. With the LBA model, we
can obtain a set of parameters (a, b, v, s, t0) for each
participant and each condition that best fits the
reaction time distributions both in the correct and
incorrect trials.

Behavioral data from the fMRI sessions were fitted
using the LBA model with the methods of Bayesian
estimation. Specifically, for each participant, behav-
ioral data (accuracy and RT for all trials) were split
into four groups, motion direction (trained vs. un-
trained) 3 session (pretest vs. posttest), and viewed as
the evidence in the process of Bayesian estimation. We
specified a uniform prior distribution for each param-
eter (a, b, v, s, t0) and assumed that the parameters of
the two accumulators were the same, except that the
summation of the drift rate of the two accumulators
was set to 1 to scale the estimated parameters. To
examine which model parameters can account for the
training-induced performance change across the four
conditions (motion direction3 session), we constructed
31 LBA models that consisted of all possible combi-
nations of the five parameters (25 � 1, here ‘‘2’’
indicated whether a specific parameter changes across
conditions, and ‘‘�1’’ indicated that the null model was
excluded). The Bayesian estimation for each candidate
model was performed with MatBugs (https://github.
com/matbugs), a software package that uses Markov
chain Monte Carlo (MCMC) simulation to obtain the
posterior distributions of the model parameters and the
model’s best-fitting parameters (Donkin, Averell,
Brown, & Heathcote, 2009). To determine the best
model, we used each model’s best-fitting parameters to
calculate the deviance information criterion (DIC). The
DIC is a hierarchical modeling generalization of the
Bayesian information criterion (BIC) and is frequently
used in the Bayesian model selection process where the
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posterior distributions are estimated by MCMC
simulation. The model with the minimal summed DIC
across participants was suggested to have the best
description of the data. We also performed Wilcoxon
sign tests between all pairs of the models to validate the
choice of the best model.

The outputs of the LBA model were the mean
estimates of the five model parameters across trials.
Then, we used maximum likelihood estimation (see
Equation S1 in Supplementary Text S1) to obtain the
single trial estimates of the drift rate v̂ and start point â
(van Maanen et al., 2011). The single trial decision
caution was defined as the difference between the mean
estimates of the response threshold b and the single trial
start point â.

fMRI data preprocessing

MRI data were separately preprocessed in Brain
Voyager QX (Brain Innovations) and SPM12 (www.
fil.ion.ucl.ac.uk/spm) following similar procedures.
The preprocessed data in Brain Voyager QX was
used to define the regions of interest (ROIs) and
perform ROI-based analyses. The preprocessed data
in SPM12 was used for the single trial analysis and
the dynamic causal modelling (DCM). In both
procedures, the first four volumes of each functional
run were discarded, allowing longitudinal magneti-
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Learning effects on drift rate

We examined the effect of training on the model
parameters. For the drift rate v (Figure 2D, see
Supplementary Figure S3 for results of decision
boundary, start point, and deviation of the drift rate), a
repeated measures ANOVA (motion direction 3
session) revealed significant effects of motion direction,
F(1, 21)¼ 15.60, p¼ 0.001, g2p ¼ 0.426; session, F(1, 21)
¼ 48.27, p , 0.001, g2p ¼ 0.697; and their interaction,
F(1, 21)¼25.43, p , 0.001, g2p¼0.548. The drift rate for
the trained direction was significantly higher than the
untrained direction in the posttest session, F(1, 21) ¼
27.22, p , 0.001, while no significant difference was
observed before the training, F(1, 21)¼ 0.08, p¼ 0.78.

Next, we examined whether the observed behavioral
learning effect can be accounted by the change of the
drift rate (C. C. Liu & Watanabe, 2012; Petrov et al.,
2011). We defined a learning modulation index (LMI,
Jehee et al., 2012) [(posttest� pretest along the trained
direction)� (posttest � pretest along the untrained
direction)] and calculated the LMIs for both the
behavioral accuracy and model parameters (drift rate v,
response threshold b, and decision caution b� a/2). We
then performed a regression analysis based on the
calculated LMIs and the results showed that only the
LMI of the drift rate can account for the variance of
the behavioral LMI across participants: regression, F(3,
12)¼ 15.48, p , 0.001, adjust R2¼ 0.67; b¼ 0.73, p ,
0.001, not that of the decision caution, b ¼ 0.214, p ¼
0.26, nor the response threshold, b ¼�0.01, p ¼ 0.97.

Session effect on decision caution

Furthermore, we observed a significant session effect
on the decision caution, F(1, 21)¼ 8.45, p , 0.01, g2p ¼
0.287 (Figure 2E). We defined a session index (SI¼
posttest� pretest) for both RT and decision caution.
The SI of the decision caution was strongly correlated
with the SI of RT across participants (correlation
efficient¼ 0.97, p , 0.001), suggesting that the slowed
RT after the training was associated with the higher
decision caution during the posttest session.

These modeling results suggest that the behavioral
learning effect can be well explained by the improve-
ment of sensory information accumulation. However,
perceptual decision-making is a complex process that
involves multiple cognitive components and brain
regions (Gold & Shadlen, 2007; Heekeren et al., 2008).
Specifically, the process of sensory information accu-
mulation is modulated by both bottom-up sensory
input (Shadlen & Newsome, 2001) and top-down
attentional feedback (Kelly & O’Connell, 2013; Kraj-
bich, Armel, & Rangel, 2010). To elucidate the neural
mechanism underlying the learning-specific improve-
ment, we first identified the decision-related network
based on fMRI signal and then determined the

functional roles of the network’s components in
perceptual learning.

Brain network for sensory information
accumulation

The behavioral and modeling results showed that the
learning effect could be explained by the increase of
drift rate. To unravel the neural mechanisms underly-
ing the perceptual learning, the neural correlates of the
drift rate need to be identified. Specifically, we
decomposed the fMRI data obtained in the pretest
session into spatial ICs. Each IC represented an
independent source of signal and the fMRI time
courses were the weighted sum of all ICs’ time courses.
We decomposed the ICs solely based on the fMRI data
from the pretest session to ensure that the ICs were
related to the decision process and the subsequent
analyses on the ICs were not biased by the learning
process. For each IC, the algorithm assigned a weight
for each voxel. IC’s spatial map was defined as the 150
voxels with the largest weights. We de-convolved each
IC’s time course to estimate the HRF and extracted the
single trial HR amplitudes with a linear regression
model. We then calculated the partial correlations
between the estimated single trial drift rates and the
single trial HR amplitudes of all ICs , controlling for
the effects of the stimulus duration and the motion
direction (Ho, Brown, & Serences, 2009; van Maanen
et al., 2011; Zhang, Hughes, & Rowe, 2012). We
examined the representation of drift rate in each IC by
comparing the obtained partial correlation coefficients
across participants with zero (FDR corrected for 20
ICs). The results showed significant effects for the ICs
located at ventral premotor cortex, PMv, t(21)¼ 2.769,
p , 0.05, FDR corrected; and supplementary eye field,
SEF, t(21)¼ 2.697, p , 0.05, FDR corrected; as well as
a trend of significance at the frontoparietal network,
FPN, t(21) ¼ 2.192, p ¼ 0.09, FDR corrected, that
included frontal eye field (FEF) and intraparietal
cortex (IPS). We refer the areas where the drift rate-
correlated ICs (PMv, SEF, and FPN) located as the
decision network of the motion direction discrimina-
tion task in the present study (Figure 3A).

Learning effects within decision network

Given the significant learning effect on the drift
rate, we expected similar learning effects in the
decision network that correlated with drift rates. We
examined learning-specific signal changes within the
identified decision network and two motion selective
areas (V3A and MTþ), as well as the between-region
connectivity. Specifically, for PMv and SEF, we
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selected 150 voxels with the largest weights based on
the spatial map of the ICA analysis. For FPN
(including FEF and IPS), we chose a voxel with the
largest weight based on the spatial map of the FPN
network for each area, and then defined a spherical
ROI (8 mm radius, ;60 voxels) centering at this voxel.



all comparisons), except for a main effect of motion
direction in MTþ, F(1, 21) ¼ 9.652, p¼ 0.005, g2p ¼
0.315.

Learning modulates feedforward connectivity

Finally, we selected the brain areas with significant
learning effects (V3A, MTþ, PMv, IPS, and FEF) and
constructed DCM models with SPM12 to examine
whether learning altered the connectivity among them.
The models were based on the voxels’ signals after
preprocessing and consisted of bidirectional connec-
tions between any two out of the five areas. The
network received external stimulus inputs (motion
stimuli) from both V3A and MTþ (Chen et al., 2015),
with the motion direction (trained vs. untrained)

serving as a modulator. We tested nine candidate
models with the assumption that training had influ-
enced different connections in each model (Table 1).
From Model 1 through Model 4, we assumed feedfor-
ward or feedback connection between the sensory areas
(V3A or MTþ) and decision-related areas (IPS, FEF,
and PMv). From Model 5 through Model 7, we





specific learning effects in multiple cortical sites of the
decision making network, indicating the involvement of
the decision network in the build-up of the perceptual
learning effects. The enhanced signals in PMv and FEF
mirrored the signal reduction in V3A and MTþ,
suggesting the co-occurrence of the refined processing
in sensory and decision areas as the product of
perceptual learning.

Third, the DCM results revealed that the effective
connectivity from V3A to PMv and from IPS to FEF
was enhanced after training. The increased feedforward
connection from V3A to PMv can be well explained by
the improved sensory accumulation process due to
perceptual training (Dosher et al., 2013; Dosher & Lu,
1998; Petrov et al., 2005). However, the enhanced
connectivity from IPS to FEF within the fronto-
parietal network needs to be explained with caution.
One possible interpretation could be that, perceptual
training refined the processing within the decision
network, including the communications between the
decision areas. However, this hypothesis needs to be
carefully examined with future experiments. Also, due
to the temporal limitation of the DCM approach on
fMRI signal, future investigations with electrophysio-
logical measurements are required for fully under-
standing the between region modulatory effect.

A number of studies have investigated the neural
mechanism of motion perceptual learning in human
brain (Chen et al., 2015; Shibata et al., 2012; Shibata,
Sasaki, Kawato, & Watanabe, 2016). Related to the
present study, Chen et al. (2015) also revealed negative
LMI learning effect in V3A and a similar trend in MTþ.
The two studies agree with each other in that motion
direction discrimination training induces BOLD signal
reduction in motion selective sensory areas that is
largely specific to the trained direction. Further,
investigations with MVPA approach have indicated
that the activity patterns in V3A rather than MTþ
robustly encode the learning-induced selectivity en-
hancement (Chen et al., 2015; Shibata et al., 2012,
Shibata et al., 2016). Although we could not perform a
proper MVPA analysis due to the limitation of the
event-related design, our DCM results suggest
strengthened feedforward connection from V3A to
PMv, but not from MTþ to higher areas, in line with
the critical role of V3A in refining sensory representa-
tion in motion perceptual learning. These results are



fluctuation of the decision process with collected brain
imaging signals (Brown & Heathcote, 2008; Donkin et
al., 2011; Ho et al., 2009; van Maanen et al., 2011;
Zhang et al., 2012). It is noteworthy that many
psychological models of decision-making have been
proposed, and they all share a similar accumulation-to-
threshold framework (Bogacz et al., 2006; Smith &
Ratcliff, 2004; Zhang, 2012). Recent studies showed
improvement in sensory information accumulation
after training by using the drift-diffusion model (Dutilh
et al., 2009; C. C. Liu & Watanabe, 2012; Petrov et al.,
2011; Zhang & Rowe, 2014), which is consistent with
our results from the LBA model. However, the
diffusion model explicitly includes within-trial vari-
ability, making it difficult to estimate the single-trial
drift rate (Ratcliff & McKoon, 2008). Nevertheless, our
results are unlikely to depend on the particular model
we used, as the LBA model reserves high correlations
on the estimated parameters compared with the drift
diffusion model (Donkin et al., 2011). To further
validate this idea with our data, we estimated the
parameters with the classical drift diffusion model. The
drift rate estimated with drift diffusion model revealed
a similar pattern of learning effect. More importantly,
the drift rate estimated from two models were highly
correlated (r . 0.762 for all four conditions, p , 0.001
for all four conditions; see Supplementary Figure S4)
across participants.

One possible concern about our finding is that
behavioral accuracy and estimated drift rate showed
similar patterns of results, and the changes of fMRI
activity could reflect the changes in performance level.
We suggest that these two indices reflect the behavioral
performance at different levels. For the motion
discrimination task, accuracy reflects the final output of
the discrimination process. However, without the
decomposition of this process with the LBA model, we
would not be able to weight the contributions of
different components (drift rate, boundary separation,
nondecision time, etc.) to the changes in directly
measurable behavioral performance (i.e., accuracy and
response time). For example, training could enlarge the
boundary separation while leaving drift rate unchanged
or increase drift rate while leaving boundary separation
constant. In both cases, we could observe increased
accuracy. As the aim of the present study was to
identify the decision network involved in the discrim-
ination task and to investigate the learning effect within
the network, drift rate can serve as a better index to
capture the trial-by-trial fluctuation in the decision
process, whereas accuracy is calculated based on the
whole set of behavioral data and does not have such
advantage.

There is an alternative approach in designing a
learning experiment by adopting different tasks in
training and tests, so that the task performance could

remain constant before and after training (Furmanski,
Schluppeck, & Engel, 2004). In the present study, we
used the discrimination task throughout the experiment
for two reasons. First, the aim of the present study was
to identify the decision network involved in the
discrimination task and to investigate the learning
effect within the network. It was necessary to use the
same angle difference for the trained and untrained
directions both before and after training, making sure
that training was the only difference across conditions.
If we changed the angle difference to control for the
task performance, the drift rate may be the same across
different experimental conditions, and we would miss
the learning effect in the decision network. We agree
that with this design the task difficulty might differ
across conditions, which however, might not contribute
largely to our main effects, as indicated by a recent
study demonstrating little impact of task difficulty on
the activity in V3A and MTþ using similar stimuli and
task design (Na et al., 2018). More importantly, if
changes in task difficulty after training could contribute
to the neural activity in the frontal areas, we would
expect reduced signals with easier task. This is in
contrast to our findings in IPS, PMv, and FEF.
Further, in a closely compared study in the manuscript,
Chen et al. (2015) measured participants’ discrimina-
tion threshold before each fMRI session and used this
threshold in the scanner to make sure that the task
performance of every condition is around 79.4%. With
this design, similar training effects were observed in
MTþ, V3A, and IPS as in the present study. Therefore,
it is unlikely that our results were due to the changes in
performance level of the discrimination task. Second, it
has been suggested that the transfer of learning between
high signal-to-noise stimuli in discrimination task and
low signal-to-noise stimuli in detection task is asym-
metrical in a variety of perceptual learning tasks
(Chang, Kourtzi, & Welchman, 2013; Dosher & Lu,
2005; F. Yang, Wu, & Li, 2014). These results suggest
that detection task and discrimination task may not
share the same mechanisms (Hol & Treue, 2001).
Furthermore, we would like to emphasize that the
improvement in performance level (i.e., accuracy) was
the main behavioral results of learning. Therefore, the
learning-induced changes of BOLD activity should co-
occur with the improvement in performance level of the
task. Beyond the results in performance level, we
decomposed the decision process with the LBA model,
and therefore were able to suggest which variables
(drift rate, boundary separation, nondecision time, etc.)
actually contributed to the observed behavioral effect.
However, we believe that this issue deserves future
investigations.

There is another issue in the present study that
deserves particular explanation. In our fMRI sessions,
the stimulus presentation terminated when the partic-
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ipant made a response. We had this design to ensure
that the fMRI signal related to information accumu-
lation was not affected by losing sensory input (e.g.,
fixed shorter duration) or adding extra sensory input
after decision process (e.g., fixed longer duration). One
could argue that, because fMRI signal may be
correlated with the length of stimulus duration, it was
possible that the observed learning effects in fMRI
signal were due to the variations in stimulus duration.
However, our main results are unlikely to be con-
founded by this factor for two reasons. First, we
observed training-specific signal reduction in motion
responsive sensory areas (V3A and MTþ). As the RT
(and hence the stimulus duration) was longer after
training and there was no significant difference between
the trained and untrained directions, the fMRI signals
in the sensory areas could not be explained by the
stimuli duration. Therefore, the fMRI signals in the
higher areas were even less likely to reflect the stimulus
duration. In fact, the significant interactions in PMv
and FEF could not be explained by the main effect of
RT, and the activation in IPS was even reduced in the
posttest session where the RTs were increased. Second,
the single trial correlation analysis revealed positive
correlations between the three ICs and drift rate. If our
results were caused by stimulus duration, negative
correlation should be expected.

Finally, training-induced perceptual and decisional
biases could also contribute to the observed learning
effect. It has been suggested that the tasks that begin
with a fixed line reference and followed by a very long
stimulus duration are particularly susceptible to deci-
sion- (Jazayeri & Movshon, 2007; Zamboni, Ledgeway,
McGraw, & Schluppeck, 2016) and adaptation-induced
biases. First, our experimental design of the discrimi-
nation task precludes the possibility that the perceived
angle of the discrimination boundary could be changed
by training. In the experiment, the fixed line reference
appeared at the beginning of each trial for 500 ms, and
followed by a 500–1,000 ms blank interval, after which
the motion stimulus was shown. The direction of the
motion stimuli can either be clockwise or counter-
clockwise relative to the reference, making the perceive
angle of the discrimination boundary unlikely to be
biased towards one of the directions. Second, we only
asked the participants to perform the fine discrimina-
tion task in the present study, rather than the
estimation task used in Jazayeri’s study. It has been
suggested that there was no systematic bias in
behavioral choices for the fine discrimination perfor-
mance, whereas the subjects’ estimates were biased
when they were asked to perform the estimation task
(Jazayeri & Movshon, 2007). Therefore, it was unlikely
that our results can be attributed to the decision bias.
Third, the perceived angle of the motion stimuli after
training could be biased. Previous studies have

investigated the training effect on the reference
repulsion (Szpiro, Spering, & Carrasco, 2014) and the
motion repulsion (Jia & Li, 2017). Importantly, based
on the recurrent model of the discrimination learning
(Teich & Qian, 2003), training would decrease the
activity of neural population preferring the trained
direction, which is also consistent with the reduced
LMI in V3A and MTþ in the current study. According
to the model, this reduction would change the perceived
direction of the motion stimuli (moves several degrees
away from the trained direction) and repel it further
away from the trained direction (i.e., perceptual bias).
This repulsive effect would further enhance partici-
pants’ discrimination sensitivity. In this framework, the
perceptual bias and the enhanced sensitivity could be
attributed to the same neural mechanism, which is also
the source of the increased drift rate after training.
Fourth, it has also been shown that motion adaptation
and perceptual learning interact with each other
(McGovern, Roach, & Webb, 2012). However, the
stimulus duration in the present study was the same as
the subject’s RTs (around 800 ms on average). This
stimulus duration is much shorter than that is usually
used in the adaptation studies (more than 20 s for initial
adapt and few seconds for each top-up). Therefore, it
was unlikely that our results were due to a strong
adaptation effect as demonstrated literature. Never-
theless, perceptual bias plays important roles in almost
all perceptual tasks. We could not completely rule out
its contribution to perceptual learning effect. Future
investigations with specific designs are required to
address this issue.

Keywords: LBA, drift rate, fMRI, motion
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